DOI QR코드

DOI QR Code

A qPCR Method to Assay Endonuclease Activity of Cas9-sgRNA Ribonucleoprotein Complexes

  • Minh Tri Nguyen (Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Science, Chungbuk National University) ;
  • Seul-Ah Kim (Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Science, Chungbuk National University) ;
  • Ya-Yun Cheng (Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Science, Chungbuk National University) ;
  • Sung Hoon Hong (Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Science, Chungbuk National University) ;
  • Yong-Su Jin (Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign) ;
  • Nam Soo Han (Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Science, Chungbuk National University)
  • Received : 2023.05.10
  • Accepted : 2023.06.06
  • Published : 2023.09.28

Abstract

The CRISPR-Cas system has emerged as the most efficient genome editing technique for a wide range of cells. Delivery of the Cas9-sgRNA ribonucleoprotein complex (Cas9 RNP) has gained popularity. The objective of this study was to develop a quantitative polymerase chain reaction (qPCR)-based assay to quantify the double-strand break reaction mediated by Cas9 RNP. To accomplish this, the dextransucrase gene (dsr) from Leuconostoc citreum was selected as the target DNA. The Cas9 protein was produced using recombinant Escherichia coli BL21, and two sgRNAs were synthesized through in vitro transcription to facilitate binding with the dsr gene. Under optimized in vitro conditions, the 2.6 kb dsr DNA was specifically cleaved into 1.1 and 1.5 kb fragments by both Cas9-sgRNA365 and Cas9-sgRNA433. By monitoring changes in dsr concentration using qPCR, the endonuclease activities of the two Cas9 RNPs were measured, and their efficiencies were compared. Specifically, the specific activities of dsr365RNP and dsr433RNP were 28.74 and 34.48 (unit/㎍ RNP), respectively. The versatility of this method was also verified using different target genes, uracil phosphoribosyl transferase (upp) gene, of Bifidobacterium bifidum and specific sgRNAs. The assay method was also utilized to determine the impact of high electrical field on Cas9 RNP activity during an efficient electroporation process. Overall, the results demonstrated that the qPCR-based method is an effective tool for measuring the endonuclease activity of Cas9 RNP.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2021R1I1A3049738).

References

  1. Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland ML, et al. 2021. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. NEJM 385: 493-502. https://doi.org/10.1056/NEJMoa2107454
  2. Jiang F, Doudna JA. 2017. CRISPR-Cas9 structures and mechanisms. Annu. Rev. 46: 505-529. https://doi.org/10.1146/annurev-biophys-062215-010822
  3. Charpentier E, Marraffini LA. 2014. Harnessing CRISPR-Cas9 immunity for genetic engineering. Curr. Opin. Microbiol. 19: 114-119. https://doi.org/10.1016/j.mib.2014.07.001
  4. Naito Y, Hino K, Bono H, Ui-Tei K. 2015. CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31: 1120-1123. https://doi.org/10.1093/bioinformatics/btu743
  5. Razzaq A, Masood A. 2018. CRISPR/Cas9 System: a breakthrough in genome editing. Mol. Biol. 7: 2.
  6. Song X, Zhang X yu, Xiong Z qiang, Liu X xin, Xia Y jun, Wang S jie, et al. 2020. CRISPR-Cas-mediated gene editing in lactic acid bacteria. Mol. Biol. Rep. 47: 8133-8144. https://doi.org/10.1007/s11033-020-05820-w
  7. Behr M, Zhou J, Xu B, Zhang H. 2021. In vivo delivery of CRISPR-Cas9 therapeutics: progress and challenges. Acta. Pharm. Sin. B 11: 2150-2171. https://doi.org/10.1016/j.apsb.2021.05.020
  8. Chen G, Abdeen AA, Wang Y, Shahi PK, Robertson S, Xie R, et al. 2019. A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing. Nat. Nanotechnol. 14: 974-980. https://doi.org/10.1038/s41565-019-0539-2
  9. Park J, Choi S, Park S, Yoon J, Park AY, Choe S. 2019. Dna-free genome editing via ribonucleoprotein (RNP) delivery of CRISPR/Cas in Lettuce. Methods Mol. Biol. 1917: 337-354. https://doi.org/10.1007/978-1-4939-8991-1_25
  10. Farboud B, Jarvis E, Roth TL, Shin J, Corn JE, Marson A, et al. 2018. Enhanced genome editing with Cas9 ribonucleoprotein in diverse cells and organisms. J. Vis. Exp. 135: 57350.
  11. Hinz JM, Laughery MF, Wyrick JJ. 2015. Nucleosomes inhibit Cas9 endonuclease activity in vitro. Biochemistry 54: 7063-7066. https://doi.org/10.1021/acs.biochem.5b01108
  12. Peng R, Lin G, Li J. 2016. Potential pitfalls of CRISPR/Cas9-mediated genome editing. FEBS J. 283: 1218-1231. https://doi.org/10.1111/febs.13586
  13. Liu W, Yu H, Zhou X, Xing D. 2016. In vitro evaluation of CRISPR/Cas9 function by an electrochemiluminescent assay. Anal. Chem. 88: 8369-8374. https://doi.org/10.1021/acs.analchem.6b02338
  14. Seamon KJ, Light YK, Saada EA, Schoeniger JS, Harmon B. 2018. Versatile high-throughput fluorescence assay for monitoring Cas9 activity. Anal. Chem. 90: 6913-6921. https://doi.org/10.1021/acs.analchem.8b01155
  15. Gong S, Yu HH, Johnson KA, Taylor DW. 2018. DNA unwinding is the primary determinant of CRISPR-Cas9 activity. Cell Rep. 22: 359-371. https://doi.org/10.1016/j.celrep.2017.12.041
  16. Raper AT, Stephenson AA, Suo Z. 2018. Functional insights revealed by the kinetic mechanism of CRISPR/Cas9. J. Am. Chem. Soc. 140: 2971-2984. https://doi.org/10.1021/jacs.7b13047
  17. Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB, et al. 2003. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc. Natl. Acad. Sci. USA 100: 13761-13766. https://doi.org/10.1073/pnas.2235592100
  18. Postollec F, Falentin H, Pavan S, Combrisson J, Sohier D. 2011. Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbiol. 28: 848-861. https://doi.org/10.1016/j.fm.2011.02.008
  19. Kim SA, Bae JH, Seong H, Han NS. 2020. Development of Leuconostoc lactis-specific quantitative PCR and its application for identification and enumeration in fermented foods. Food Anal. Methods 13: 992-999. https://doi.org/10.1007/s12161-020-01720-8
  20. Svec D, Tichopad A, Novosadova V, Pfaffl MW, Kubista M. 2015. How good is a PCR efficiency estimate: recommendations for precise and robust qPCR efficiency assessments. Biomol. Detect. Quantif. 3: 9-16. https://doi.org/10.1016/j.bdq.2015.01.005
  21. Wang P, Xiong A, Gao Z, Yu X, Li M, Hou Y, et al. 2016. Selection of suitable reference genes for RTqPCR normalization under abiotic stresses and hormone stimulation in persimmon (Diospyros kaki Thunb). PLoS One 11: e0160885.
  22. Jin Q, Li L, Kim YJ, Han NS. 2014. Construction of a dextran-free Leuconostoc citreum mutant by targeted disruption of the dextransucrase gene. J. Appl. Microbiol. 117: 1104-1112. https://doi.org/10.1111/jam.12587
  23. Yu J, Baek K, Jin E, Bae S. 2017. DNA-free genome editing of Chlamydomonas reinhardtii using CRISPR and subsequent mutant analysis. Bio. Protoc. 7: e2352.
  24. Bisswanger H. 2014. Enzyme assays. Perspect. Sci. 1: 41-55. https://doi.org/10.1016/j.pisc.2014.02.005
  25. Wright A V., Sternberg SH, Taylor DW, Staahl BT, Bardales JA, Kornfeld JE, et al. 2015. Rational design of a split-Cas9 enzyme complex. Proc. Natl. Acad. Sci. USA 112: 2984-2989. https://doi.org/10.1073/pnas.1501698112
  26. Concordet JP, Haeussler M. 2018. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46: W242-W245. https://doi.org/10.1093/nar/gky354
  27. Huggett JF, Novak T, Garson JA, Green C, Morris-Jones SD, Miller RF, et al. 2008. Differential susceptibility of PCR reactions to inhibitors: an important and unrecognized phenomenon. BMC Res. Notes 1: 70.
  28. Thornton B, Basu C. 2015. Rapid and simple method of qPCR primer design. Methods Mol. Biol. 1275: 173-179. https://doi.org/10.1007/978-1-4939-2365-6_13
  29. Lino CA, Harper JC, Carney JP, Timlin JA. 2018. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv. 25: 1234-1257. https://doi.org/10.1080/10717544.2018.1474964
  30. Zhang S, Shen J, Li D, Cheng Y. 2020. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics 11: 614-648. https://doi.org/10.7150/thno.47007
  31. Dagdas YS, Chen JS, Sternberg SH, Doudna JA, Yildiz A. 2017. A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9. Sci. Adv. 3: eaao0027.
  32. Jensen KT, Floe L, Petersen TS, Huang J, Xu F, Bolund L, et al. 2017. Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency. FEBS Lett. 591: 1892-1901. https://doi.org/10.1002/1873-3468.12707
  33. Zhang L, Rube HT, Bussemaker HJ, Pufall MA. 2017. The effect of sequence mismatches on binding affinity and endonuclease activity are decoupled throughout the Cas9 binding site. BioRxiv 2017: 176255.
  34. Zuo Z, Liu J. 2017. Structure and dynamics of Cas9 HNH domain catalytic state. Sci. Rep. 7: 17271.
  35. Bustin SA, Nolan T. 2020. RT-QPCR testing of SARS-COV-2: a primer. Int. J. Mol. Sci. 21: 3004.
  36. Van Der Meide W, Guerra J, Schoone G, Farenhorst M, Coelho L, Faber W, et al. 2008. Comparison between quantitative nucleic acid sequence-based amplification, real-time reverse transcriptase PCR, and real-time PCR for quantification of Leishmania parasites. J. Clin. Microbiol. 46: 73-78. https://doi.org/10.1128/JCM.01416-07
  37. Peleg-Chen D, Shuvali G, Brio L, Ifrach A, Iancu O, Barbiro-Michaely E, et al. 2022. Microfluidic tool for rapid functional characterization of CRISPR complexes. N. Biotechnol. 68: 1-8. https://doi.org/10.1016/j.nbt.2022.01.003
  38. Baeyens WRG, Schulman SG, Calokerinos AC, Zhao Y, Campana G, Nakashima K, et al. 1998. Chemiluminescence-based detection: principles and analytical applications in flowing streams and in immunoassays. J. Pharm. Biomed. Anal. 17: 6-7. https://doi.org/10.1016/S0731-7085(98)00062-4
  39. Yourik P, Fuchs RT, Mabuchi M, Curcuru JL, Robb GB. 2019. Staphylococcus aureus Cas9 is a multiple-turnover enzyme. RNA 25: 35-44. https://doi.org/10.1261/rna.067355.118
  40. Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE. 2016. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34: 339-344. https://doi.org/10.1038/nbt.3481
  41. Raper AT, Stephenson AA, Suo Z. 2018. Functional insights revealed by the kinetic mechanism of CRISPR/Cas9. J. Am. Chem. Soc. 8: 2971-2984. https://doi.org/10.1021/jacs.7b13047