DOI QR코드

DOI QR Code

Nuclear Bodies Built on Architectural Long Noncoding RNAs: Unifying Principles of Their Construction and Function

  • Received : 2017.10.17
  • Accepted : 2017.11.20
  • Published : 2017.12.31

Abstract

Nuclear bodies are subnuclear, spheroidal, and membraneless compartments that concentrate specific proteins and/or RNAs. They serve as sites of biogenesis, storage, and sequestration of specific RNAs, proteins, or ribonucleoprotein complexes. Recent studies reveal that a subset of nuclear bodies in various eukaryotic organisms is constructed using architectural long noncoding RNAs (arcRNAs). Here, we describe the unifying mechanistic principles of the construction and function of these bodies, especially focusing on liquid-liquid phase separation induced by architectural molecules that form multiple weakly adhesive interactions. We also discuss three possible advantages of using arcRNAs rather than architectural proteins to build the bodies: position-specificity, rapidity, and economy in sequestering nucleic acid-binding proteins. Moreover, we introduce two recently devised methods to discover novel arcRNA-constructed bodies; one that focuses on the RNase-sensitivity of these bodies, and another that focuses on "semi-extractability" of arcRNAs.

Keywords

References

  1. Adriaens, C., Standaert, L., Barra, J., Latil, M., Verfaillie, A., Kalev, P., Boeckx, B., Wijnhoven, P.W., Radaelli, E., Vermi, W., et al. (2016). p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat. Med. 22, 861-868. https://doi.org/10.1038/nm.4135
  2. Audas, T.E., Jacob, M.D., and Lee, S. (2012). Immobilization of proteins in the nucleolus by ribosomal intergenic spacer noncoding RNA. Mol. Cell 45, 147-157. https://doi.org/10.1016/j.molcel.2011.12.012
  3. Banani, S.F., Lee, H.O., Hyman, A.A., and Rosen, M.K. (2017). Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285-298. https://doi.org/10.1038/nrm.2017.7
  4. Berry, J., Weber, S.C., Vaidya, N, Haataja, M., and Brangwynne, C.P. (2015). RNA transcription modulates phase transition-driven nuclear body assembly. Proc. Natl. Acad. Sci. USA 112, E5237-5245. https://doi.org/10.1073/pnas.1509317112
  5. Brangwynne, C.P., Eckmann, C.R., Courson, D.S., Rybarska, A., Hoege, C., Gharakhani, J., Julicher, F., and Hyman, A.A. (2009). Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729-1732. https://doi.org/10.1126/science.1172046
  6. Brangwynne, C.P., Mitchison, T.J., and Hyman, A.A. (2011). Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl. Acad. Sci. USA 108, 4334-4339. https://doi.org/10.1073/pnas.1017150108
  7. Brangwynne, C.P., Tompa, P., and Pappu, R.V. (2015). Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899-904. https://doi.org/10.1038/nphys3532
  8. Chakravarty, D., Sboner, A., Nair, S.S., Giannopoulou, E., Li, R., Hennig, S., Mosquera, J.M., Pauwels, J., Park, K., Kossai, M., et al. (2014). The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nat. Commun. 5, 5383. https://doi.org/10.1038/ncomms6383
  9. Charizanis, K., Lee, K.Y., Batra, R., Goodwin, M., Zhang, C., Yuan, Y., Shiue, L., Cline, M., Scotti, M.M., Xia, G., et al. (2012). Muscleblindlike 2-mediated alternative splicing in the developing brain and dysregulation in myotonic dystrophy. Neuron 75, 437-450. https://doi.org/10.1016/j.neuron.2012.05.029
  10. Choudhry, H., Albukhari, A., Morotti, M., Hider, S., Moralli, D., Smythies, J., Schodel, J., Green, C.M., Camps, C., Buffa, F., et al. (2014). Tumor hypoxia induces nuclear paraspeckle formation through HIF-2alpha dependent transcriptional activation of NEAT1 leading to cancer cell survival. Oncogene 34, 4546.
  11. Chujo, T., Yamazaki, T., and Hirose, T. (2016). Architectural RNAs (arcRNAs): A class of long noncoding RNAs that function as the scaffold of nuclear bodies. Biochim. et Biophys. Acta 1859, 139-146. https://doi.org/10.1016/j.bbagrm.2015.05.007
  12. Chujo, T., Yamazaki, T., Kawaguchi, T., Kurosaka, S., Takumi, T., Nakagawa, S., and Hirose, T. (2017). Unusual semi-extractability as a hallmark of nuclear body-associated architectural noncoding RNAs. EMBO J. 36, 1447-1462. https://doi.org/10.15252/embj.201695848
  13. Clemson, C.M., Hutchinson, J.N., Sara, S.A., Ensminger, A.W., Fox, A.H., Chess, A., and Lawrence, J.B. (2009). An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol. Cell 33, 717-726. https://doi.org/10.1016/j.molcel.2009.01.026
  14. Dangli, A., Grond, C., Kloetzel, P., and Bautz, E.K. (1983). Heatshock puff 93 D from Drosophila melanogaster: accumulation of a RNP-specific antigen associated with giant particles of possible storage function. EMBO J. 2, 1747-1751.
  15. Dundr, M., Hebert, M.D., Karpova, T.S., Stanek, D., Xu, H., Shpargel, K.B., Meier, U.T., Neugebauer, K.M., Matera, A.G., and Misteli, T. (2004). In vivo kinetics of Cajal body components. J. Cell Biol. 164, 831-842. https://doi.org/10.1083/jcb.200311121
  16. Garbe, J.C., Bendena, W.G., Alfano, M., and Pardue, M.L. (1986). A Drosophila heat shock locus with a rapidly diverging sequence but a conserved structure. J. Biol. Chem. 261, 16889-16894.
  17. Hennig, S., Kong, G., Mannen, T., Sadowska, A., Kobelke, S., Blythe, A., Knott, G.J., Iyer, K.S., Ho, D., Newcombe, E.A., et al. (2015). Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles. J. Cell Biol. 210, 529-539. https://doi.org/10.1083/jcb.201504117
  18. Hirose, T., and Goshima, N. (2015). Genome-wide co-localization screening of nuclear body components using a fluorescently tagged FLJ cDNA clone library. Methods Mol. Biol. 1262, 155-163.
  19. Hirose, T., Virnicchi, G., Tanigawa, A., Naganuma, T., Li, R., Kimura, H., Yokoi, T., Nakagawa, S., Benard, M., Fox, A.H., et al. (2014). NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol. Biol. Cell 25, 169-183. https://doi.org/10.1091/mbc.E13-09-0558
  20. Hogan, N.C., Traverse, K.L., Sullivan, D.E., and Pardue, M.L. (1994). The nucleus-limited Hsr-omega-n transcript is a polyadenylated RNA with a regulated intranuclear turnover. J. Cell Biol. 125, 21-30. https://doi.org/10.1083/jcb.125.1.21
  21. Hon, C.C., Ramilowski, J.A., Harshbarger, J., Bertin, N., Rackham, O.J., Gough, J., Denisenko, E., Schmeier, S., Poulsen, T.M., Severin, J., et al. (2017). An atlas of human long non-coding RNAs with accurate 5' ends. Nature 543, 199-204. https://doi.org/10.1038/nature21374
  22. Imamura, K., Imamachi, N., Akizuki, G., Kumakura, M., Kawaguchi, A., Nagata, K., Kato, A., Kawaguchi, Y., Sato, H., Yoneda, M., et al. (2014). Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol. Cell 53, 393-406. https://doi.org/10.1016/j.molcel.2014.01.009
  23. Jain, A., and Vale, R.D. (2017). RNA phase transitions in repeat expansion disorders. Nature 546, 243-247. https://doi.org/10.1038/nature22386
  24. Kaiser, T.E., Intine, R.V., and Dundr, M. (2008). De novo formation of a subnuclear body. Science 322, 1713-1717. https://doi.org/10.1126/science.1165216
  25. Kato, M., Han, T.W., Xie, S., Shi, K., Du, X., Wu, L.C., Mirzaei, H., Goldsmith, E.J, Longgood, J., Pei, J., et al. (2012). Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753-767. https://doi.org/10.1016/j.cell.2012.04.017
  26. Kawaguchi, T., Tanigawa, A., Naganuma, T., Ohkawa, Y., Souquere, S., Pierron, G., and Hirose, T. (2015). SWI/SNF chromatin-remodeling complexes function in noncoding RNA-dependent assembly of nuclear bodies. Proc. Natl. Acad. Sci. USA 112, 4304-4309. https://doi.org/10.1073/pnas.1423819112
  27. King, O.D., Gitler, A.D., and Shorter, J. (2012). The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res. 1462, 61-80. https://doi.org/10.1016/j.brainres.2012.01.016
  28. Liu, J.L., Murphy, C., Buszczak, M., Clatterbuck, S., Goodman, R., and Gall, J.G. (2006). The Drosophila melanogaster Cajal body. J. Cell Biol. 172, 875-884. https://doi.org/10.1083/jcb.200511038
  29. Lunde, B.M., Moore, C., and Varani, G. (2007). RNA-binding proteins: modular design for efficient function. Nat. Rev. Mol. Cell Biol. 8, 479-490. https://doi.org/10.1038/nrm2178
  30. Mallik, M., and Lakhotia, S.C. (2009). RNAi for the large non-coding hsromega transcripts suppresses polyglutamine pathogenesis in Drosophila models. RNA Biol. 6, 464-478. https://doi.org/10.4161/rna.6.4.9268
  31. Mannen, T., Yamashita, S., Tomita, K., Goshima, N., and Hirose, T. (2016). The Sam68 nuclear body is composed of two RNase-sensitive substructures joined by the adaptor HNRNPL. J. Cell Biol. 214, 45-59. https://doi.org/10.1083/jcb.201601024
  32. Mao, Y.S., Sunwoo, H., Zhang, B., and Spector, D.L. (2011). Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat. Cell Biol. 13, 95-101. https://doi.org/10.1038/ncb2140
  33. Mekhail, K., Gunaratnam, L., Bonicalzi, M.E., and Lee, S. (2004). HIF activation by pH-dependent nucleolar sequestration of VHL. Nat. Cell Biol. 6, 642-647. https://doi.org/10.1038/ncb1144
  34. Mello, S.S., Sinow, C., Raj, N., Mazur, P.K., Bieging-Rolett, K., Broz, D.K., Imam, J.F.C., Vogel, H., Wood, L.D., Sage, J., et al. (2017). Neat1 is a p53-inducible lincRNA essential for transformation suppression. Genes Dev. 31, 1095-1108. https://doi.org/10.1101/gad.284661.116
  35. Miller, J.W., Urbinati, C.R., Teng-Umnuay, P., Stenberg, M.G., Byrne, B.J., Thornton, C.A., and Swanson, M.S. (2000). Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J. 19, 4439-4448. https://doi.org/10.1093/emboj/19.17.4439
  36. Molliex, A., Temirov, J., Lee, J., Coughlin, M., Kanagaraj, A.P., Kim, H.J., Mittag, T., and Taylor, J.P. (2015). Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123-133. https://doi.org/10.1016/j.cell.2015.09.015
  37. Moyzis, R.K., Albright, K.L., Bartholdi, M.F., Cram, L.S., Deaven, L.L., Hildebrand, C.E., Joste, N.E., Longmire, J.L., Meyne, J., and Schwarzacher-Robinson, T. (1987). Human chromosome-specific repetitive DNA sequences, novel markers for genetic analysis. Chromosoma 95, 375-386. https://doi.org/10.1007/BF00333988
  38. Naganuma, T., Nakagawa, S., Tanigawa, A., Sasaki, Y.F., Goshima, N., and Hirose, T. (2012). Alternative 3'-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. EMBO J. 31, 4020-4034. https://doi.org/10.1038/emboj.2012.251
  39. Nakagawa, S., Shimada, M., Yanaka, K., Mito, M., Arai, T., Takahashi, E., Fujita, Y., Fujimori, T., Standaert, L., Marine, J.C., et al. (2014). The lncRNA Neat1 is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice. Development 141, 4618-4627. https://doi.org/10.1242/dev.110544
  40. Nott, T.J., Petsalaki, E., Farber, P., Jervis, D., Fussner, E., Plochowietz, A., Craggs, T.D., Bazett-Jones, D.P., Pawson, T., Forman-Kay, J.D., et al. (2015). Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57, 936-947. https://doi.org/10.1016/j.molcel.2015.01.013
  41. Onorati, M.C., Lazzaro, S., Mallik, M., Ingrassia, A.M., Carreca, A.P., Singh, A.K., Chaturvedi, D.P., Lakhotia, S.C., and Corona, D.F. (2011). The ISWI chromatin remodeler organizes the hsromega ncRNAcontaining omega speckle nuclear compartments. PLoS Genet. 7, e1002096. https://doi.org/10.1371/journal.pgen.1002096
  42. Petri, M., Frey, S., Menzel, A., Gorlich, D., and Techert, S. (2012). Structural characterization of nanoscale meshworks within a nucleoporin FG hydrogel. Biomacromolecules 13, 1882-1889. https://doi.org/10.1021/bm300412q
  43. Prasanth, K.V., Rajendra, T.K., Lal, A.K., and Lakhotia, S.C. (2000). Omega speckles - a novel class of nuclear speckles containing hnRNPs associated with noncoding hsr-omega RNA in Drosophila. J. Cell Sci. 113 (Pt 19), 3485-3497.
  44. Prikryl, J., Rojas, M., Schuster, G., and Barkan, A. (2011). Mechanism of RNA stabilization and translational activation by a pentatricopeptide repeat protein. Proc. Natl. Acad. Sci. USA 108, 415-420. https://doi.org/10.1073/pnas.1012076108
  45. Reichheld, S.E., Muiznieks, L.D., Keeley, F.W., and Sharpe, S. (2017). Direct observation of structure and dynamics during phase separation of an elastomeric protein. Proc. Natl. Acad. Sci. USA 14, E4408-E4415.
  46. Rizzi, N., Denegri, M., Chiodi, I., Corioni, M., Valgardsdottir, R., Cobianchi, F., Riva, S., and Biamonti, G. (2004). Transcriptional activation of a constitutive heterochromatic domain of the human genome in response to heat shock. Mol. Biol. Cell 15, 543-551. https://doi.org/10.1091/mbc.e03-07-0487
  47. Sasaki, Y.T., Ideue, T., Sano, M., Mituyama, T., and Hirose, T. (2009). MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc. Natl. Acad. Sci. USA 106, 2525-2530. https://doi.org/10.1073/pnas.0807899106
  48. Schwartz, J.C., Wang, X., Podell, E.R., and Cech, T.R. (2013). RNA seeds higher-order assembly of FUS protein. Cell Rep. 5, 918-925. https://doi.org/10.1016/j.celrep.2013.11.017
  49. Shevtsov, S.P., and Dundr, M. (2011). Nucleation of nuclear bodies by RNA. Nat. Cell Biol. 13, 167-173. https://doi.org/10.1038/ncb2157
  50. Shimada, T., Yamashita, A., and Yamamoto, M. (2003). The fission yeast meiotic regulator Mei2p forms a dot structure in the horse-tail nucleus in association with the sme2 locus on chromosome II. Mol. Biol. Cell 14, 2461-2469. https://doi.org/10.1091/mbc.E02-11-0738
  51. Souquere, S., Beauclair, G., Harper, F., Fox, A., and Pierron, G. (2010). Highly ordered spatial organization of the structural long noncoding NEAT1 RNAs within paraspeckle nuclear bodies. Mol. Biol. Cell 21, 4020-4027. https://doi.org/10.1091/mbc.E10-08-0690
  52. Standaert, L., Adriaens, C., Radaelli, E., Van Keymeulen, A., Blanpain, C., Hirose, T., Nakagawa, S., and Marine, J.C. (2014). The long noncoding RNA Neat1 is required for mammary gland development and lactation. RNA 20, 1844-1849. https://doi.org/10.1261/rna.047332.114
  53. Taneja, K.L., McCurrach, M., Schalling, M., Housman, D., and Singer, R.H. (1995). Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J. Cell Biol. 128, 995-1002. https://doi.org/10.1083/jcb.128.6.995
  54. Valgardsdottir, R., Chiodi, I., Giordano, M., Cobianchi, F., Riva, S., and Biamonti, G. (2005). Structural and functional characterization of noncoding repetitive RNAs transcribed in stressed human cells. Mol. Biol. Cell 16, 2597-2604. https://doi.org/10.1091/mbc.E04-12-1078
  55. West, J.A., Mito, M., Kurosaka, S., Takumi, T., Tanegashima, C., Chujo, T., Yanaka, K., Kingston, R.E., Hirose, T., Bond, C., et al. (2016). Structural, super-resolution microscopy analysis of paraspeckle nuclear body organization.J. Cell Biol. 214, 817-830. https://doi.org/10.1083/jcb.201601071
  56. Wojciechowska, M., and Krzyzosiak, W.J. (2011). Cellular toxicity of expanded RNA repeats, focus on RNA foci. Hum. Mol. Genet. 20, 3811-3821. https://doi.org/10.1093/hmg/ddr299
  57. Yamashita, A., Watanabe, Y., Nukina, N., and Yamamoto, M. (1998). RNA-assisted nuclear transport of the meiotic regulator Mei2p in fission yeast. Cell 95, 115-123. https://doi.org/10.1016/S0092-8674(00)81787-0
  58. Yamazaki, T., and Hirose, T. (2015). The building process of the functional paraspeckle with long non-coding RNAs. Front Biosci. 7, 1-41.

Cited by

  1. Stress-Induced Low Complexity RNA Activates Physiological Amyloidogenesis vol.24, pp.7, 2017, https://doi.org/10.1016/j.celrep.2018.07.040
  2. Molecular dissection of nuclear paraspeckles: towards understanding the emerging world of the RNP milieu vol.8, pp.10, 2018, https://doi.org/10.1098/rsob.180150
  3. A Short Tandem Repeat-Enriched RNA Assembles a Nuclear Compartment to Control Alternative Splicing and Promote Cell Survival vol.72, pp.3, 2018, https://doi.org/10.1016/j.molcel.2018.08.041
  4. Yb body assembly on the flamenco piRNA precursor transcripts reduces genic piRNA production vol.30, pp.12, 2017, https://doi.org/10.1091/mbc.e17-10-0591
  5. The Nucleolus: A Multiphase Condensate Balancing Ribosome Synthesis and Translational Capacity in Health, Aging and Ribosomopathies vol.8, pp.8, 2017, https://doi.org/10.3390/cells8080869
  6. The lncRNA hsrω regulates arginine dimethylation of human FUS to cause its proteasomal degradation in Drosophila vol.132, pp.20, 2017, https://doi.org/10.1242/jcs.236836
  7. Long Noncoding RNAs in Acute Myeloid Leukemia: Functional Characterization and Clinical Relevance vol.11, pp.11, 2017, https://doi.org/10.3390/cancers11111638
  8. Molecular anatomy of the architectural NEAT1 noncoding RNA: The domains, interactors, and biogenesis pathway required to build phase‐separated nuclear paraspeckles vol.10, pp.6, 2017, https://doi.org/10.1002/wrna.1545
  9. Architectural RNAs for Membraneless Nuclear Body Formation vol.84, pp.None, 2017, https://doi.org/10.1101/sqb.2019.84.039404
  10. Using RNA Sequencing and Spike-in RNAs to Measure Intracellular Abundance of lncRNAs and mRNAs vol.10, pp.19, 2017, https://doi.org/10.21769/bioprotoc.3772
  11. Identification of Genomic Loci Responsible for the Formation of Nuclear Domains Using Lampbrush Chromosomes vol.6, pp.1, 2017, https://doi.org/10.3390/ncrna6010001
  12. The Emerging Role of ncRNAs and RNA-Binding Proteins in Mitotic Apparatus Formation vol.6, pp.1, 2017, https://doi.org/10.3390/ncrna6010013
  13. RNA Droplets vol.49, pp.None, 2020, https://doi.org/10.1146/annurev-biophys-052118-115508
  14. Phase separation driven by production of architectural RNA transcripts vol.16, pp.19, 2017, https://doi.org/10.1039/c9sm02458a
  15. Architectural RNA in chromatin organization vol.48, pp.5, 2017, https://doi.org/10.1042/bst20191226
  16. LncRNAs: Architectural Scaffolds or More Potential Roles in Phase Separation vol.12, pp.None, 2017, https://doi.org/10.3389/fgene.2021.626234
  17. Modulation of Phase Separation by RNA: A Glimpse on N6-Methyladenosine Modification vol.9, pp.None, 2017, https://doi.org/10.3389/fcell.2021.786454
  18. Non-coding RNAs in chromatin folding and nuclear organization vol.78, pp.14, 2021, https://doi.org/10.1007/s00018-021-03876-w
  19. Regulation of epigenetic processes by non-coding RNAs vol.64, pp.3, 2017, https://doi.org/10.1007/s13237-021-00372-1