• Title/Summary/Keyword: Rhizopus oryzae lipase

Search Result 6, Processing Time 0.018 seconds

Biodiesel Production Using a Mixture of Immobilized Rhizopus oryzae and Candida rugosa Lipases

  • Lee, Dong-Hwan;Kim, Jung-Mo;Shin, Hyun-Yong;Kang, Seong-Woo;Kim, Seung-Wook
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.522-525
    • /
    • 2006
  • Biodiesel conversion from soybean oil reached a maximum of 70% at 18 h using immobilized 1,3-specific Rhizopus oryzae lipase alone. Biodiesel conversion failed to reach 20% after 30 h when immobilized nonspecific Candida rugosa lipase alone was used. To increase the biodiesel production yield, a mixture of immobilized 1,3-specific R. oryzae lipase and nonspecific C. rugosa lipase was used. Using this mixture a conversion of greater than 99% at 21 h was attained. When the stability of the immobilized lipases mixture was tested, biodiesel conversion was maintained at over 80% of its original conversion after 10 cycles.

Optimization of the Process for Biodiesel Production Using a Mixture of Immobilized Rhizopus oryzae and Candida rugosa Lipases

  • Lee, Jong-Ho;Lee, Dong-Hwan;Lim, Jung-Soo;Um, Byung-Hwan;Park, Chul-Hwan;Kang, Seong-Woo;Kim, Seung-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1927-1931
    • /
    • 2008
  • In this study, the enzymatic process for biodiesel production was optimized using a mixture of immobilized Rhizopus oryzae and Candida rugosa lipases. The optimal temperature and agitation speed for biodiesel production were $45^{\circ}C$ and 300 rpm, respectively. The optimal ratio of R. oryzae and C. rugosa lipases in the mixture was 3:1 (w:w). When 3 mmol of methanol was the initial reaction medium and 3 mmol of methanol was added every 1.5 h during biodiesel production, biodiesel conversion was over 98% at 4 h. In addition, when the immobilized lipase mixture was reused, biodiesel conversion exceeded 80% after 5 reuses.

Purification and Properties of Extracellular Lipases with Transesterification Activity and 1,3-Regioselectivity from Rhizomucor miehei and Rhizopus oryzae

  • Tako, Miklos;Kotogan, Alexandra;Papp, Tamas;Kadaikunnan, Shine;Alharbi, Naiyf S.;Vagvolgyi, Csaba
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.277-288
    • /
    • 2017
  • Rhizomucor miehei NRRL 5282 and Rhizopus oryzae NRRL 1526 can produce lipases with high synthetic activities in wheat bran-based solid-state culture. In this study, the purification and biochemical characterization of the lipolytic activities of these lipases are presented. SDS-PAGE indicated a molecular mass of about 55 and 35 kDa for the purified R. miehei and Rh. oryzae enzymes, respectively. p-Nitrophenyl palmitate (pNPP) hydrolysis was maximal at $40^{\circ}C$ and pH 7.0 for the R. miehei lipase, and at $30^{\circ}C$ and pH 5.2 for the Rh. oryzae enzyme. The enzymes showed almost equal affinity to pNPP, but the $V_{max}$ of the Rh. oryzae lipase was about 1.13 times higher than that determined for R. miehei using the same substrate. For both enzymes, a dramatic loss of activity was observed in the presence of 5 mM $Hg^{2+}$, $Zn^{2+}$, or $Mn^{2+}$, 10 mM N-bromosuccinimide or sodium dodecyl sulfate, and 5-10% (v/v) of hexanol or butanol. At the same time, they proved to be extraordinarily stable in the presence of n-hexane, cyclohexane, n-heptane, and isooctane. Moreover, isopentanol up to 10% (v/v) and propionic acid in 1 mM concentrations increased the pNPP hydrolyzing activity of R. miehei lipase. Both enzymes had 1,3-regioselectivity, and efficiently hydrolyzed p-nitrophenyl (pNP) esters with C8-C16 acids, exhibiting maximum activity towards pNP-caprylate (R. miehei) and pNP-dodecanoate (Rh. oryzae). The purified lipases are promising candidates for various biotechnological applications.

Optimization of Lipase Pretreatment Prior to Lipase Immobilization to Prevent Loss of Activity

  • Lee, Dong-Hwan;Kim, Jung-Mo;Shin, Hyun-Yong;Kim, Seung-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.650-654
    • /
    • 2007
  • In our previous work, a method of pretreating lipase was developed to prevent loss of its activity during covalent immobilization. In this study, Rhizopus oryzae lipase was pretreated before immobilization and then immobilized on a silica gel surface. The effects of the various materials and conditions used in the pretreatment stage on the activity of immobilized lipase were investigated. Immobilized lipase pretreated with 0.1% of soybean oil had better activity than those pretreated with other materials. The optimal temperature, agitation speed, and pretreating time for lipase pretreatment were determined to be $40^{\circ}C$, 200rpm, and 45min, respectively. The activity of immobilized soybean oil pretreated lipase was 630U/g matrix, which is 20 times higher than that of immobilized non-pretreated lipase. In addition, immobilized lipase activity was maintained at levels exceeding 90% of its original activity after 10 reuses.

Biochemical Characteristics of Whole Soybean Cereals Fermented with Mucor and Rhizopus Strains (Mucor 및 Rhizopus속 균류를 이용한 콩알메주 발효의 생화학적 특성)

  • Kim, Dong-Ho;Kim, Seung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.176-182
    • /
    • 1999
  • Whole soybean cereal was fermented with four fungal strains (Mucor and Rhizopus) in pilot meju fermentation system. The pH range of the fermented soybean cereal was $7.16{\sim}8.38$, the contents of reducing sugar and amino-nitrogen were $0.54{\sim}2.64%,\;93{\sim}312mg%$, respectively, and that of free fatty acid ranged $0.06{\sim}2.00%$. The components of the amino acid, organic acid, free sugars and fatty acid showed distinctive patterns among four groups of fermented soybean cereals. Amylase activity and carbohydrate degradation rate of R. oryzae, protease and protein degadation rate of R. stolonifer was higher than other strains. But lipase and lipid degradation rates of four strains were similar. The odor concentrates of the soybean cereals fermented with Mucor strains were similar to Aspergillus strains, but Rhizopus were possessed of the flavor components of Bacillus and Aspergillus. Soysauce, made from M. hiemalis and R. stolonifer fermented soybean cereal showed excellent sensory evaluation and it was proposed that the two strains will be useful in Korean soysauce process.

  • PDF

Bioproduction of trans-10,cis-12-Conjugated Linoleic Acid by a Highly Soluble and Conveniently Extracted Linoleic Acid Isomerase and an Extracellularly Expressed Lipase from Recombinant Escherichia coli Strains

  • Huang, Mengnan;Lu, Xinyao;Zong, Hong;Zhuge, Bin;Shen, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.739-747
    • /
    • 2018
  • The low solubility and high-cost recovery of Propionibacterium acnes polyunsaturated fatty acid isomerase (PAI) are key problems in the bioproduction of high value-added conjugated linoleic acid (CLA). To improve the solubility of recombinant PAI, six chaperone proteins were coexpressed with PAI. Introduction of GroELS proteins dramatically improved the PAI solubility from 29% to 97%, with increased activity by 57.8%. Combined expression of DnaKJ-GrpE and GroELS proteins increased the activity by 11.9%. In contrast, coexpression of DnaKJ-GrpE proteins significantly reduced the activity by 57.4%. Plasmids pTf16 harboring the tig gene and pG-Tf2 containing the tig and groEL-groES genes had no visible impact on PAI expression. The lytic protein E was then introduced into the recombinant Escherichia coli to develop a cell autolysis system. A 35% activity of total intracellular PAI was released from the cytoplasm by suspending the lysed cells in distilled water. The PAI recovery was further improved to 81% by optimizing the release conditions. The lipase from Rhizopus oryzae was also expressed in E. coli, with an extracellular activity of 110.9 U/ml. By using the free PAI and lipase as catalysts, a joint system was established for producing CLA from sunflower oil. Under the optimized conditions, the maximum titer of t-10,c-12-CLA reached 9.4 g/l. This work provides an effective and low-cost strategy to improve the solubility and recovery of the recombinant intracellular PAI for further large-scale production of CLA.