Biodiesel Production Using a Mixture of Immobilized Rhizopus oryzae and Candida rugosa Lipases

  • Lee, Dong-Hwan (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Jung-Mo (Department of Chemical and Biological Engineering, Korea University) ;
  • Shin, Hyun-Yong (Department of Chemical and Biological Engineering, Korea University) ;
  • Kang, Seong-Woo (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Seung-Wook (Department of Chemical and Biological Engineering, Korea University)
  • Published : 2006.12.31

Abstract

Biodiesel conversion from soybean oil reached a maximum of 70% at 18 h using immobilized 1,3-specific Rhizopus oryzae lipase alone. Biodiesel conversion failed to reach 20% after 30 h when immobilized nonspecific Candida rugosa lipase alone was used. To increase the biodiesel production yield, a mixture of immobilized 1,3-specific R. oryzae lipase and nonspecific C. rugosa lipase was used. Using this mixture a conversion of greater than 99% at 21 h was attained. When the stability of the immobilized lipases mixture was tested, biodiesel conversion was maintained at over 80% of its original conversion after 10 cycles.

Keywords

References

  1. Krawczyk, T. (1996) Biodiesel-alternative fuel makes inroads but hurdles remain. Inform 7: 801-829
  2. Muniyappa, P. R., S. C. Brammer, and H. Noureddini (1996) Improved conversion of plant oils and animal fats into biodiesel and co-product. Bioresour. Technol. 56: 19-24 https://doi.org/10.1016/0960-8524(95)00178-6
  3. Lara Pizarro, A. V. and E. Y. Park (2003) Lipasecatalyzed production of biodiesel fuel from vegetable oils contained in waste activated bleaching earth. Process Biochem. 38: 1077-1082 https://doi.org/10.1016/S0032-9592(02)00241-8
  4. Ban, K., M. Kaieda, T. Matsumoto, A. Kondo, and H. Fukuda (2001) Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochem. Eng. J. 8: 39-43 https://doi.org/10.1016/S1369-703X(00)00133-9
  5. Matsumoto, T., S. Takahashi, M. Kaieda, M. Ueda, A. Tanaka, H. Fukuda, and A. Kondo (2001) Yeast wholecell biocatalyst constructed by intracellular overproduction of Rhizopus oryzae lipase is applicable to biodiesel fuel production. Appl. Microbiol. Biotechnol. 57: 515-520 https://doi.org/10.1007/s002530100733
  6. Shimada, Y., Y. Watanabe, T. Samukawa, A. Sugihara, H. Noda, H. Fukuda, and Y. Tominaga (1999) Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. J. Am. Oil Chem. Soc. 76: 789-793 https://doi.org/10.1007/s11746-999-0067-6
  7. Samukawa, T., M. Kaieda, T. Matsumoto, K. Ban, A. Kondo, Y. Shimada, H. Noda, and H. Fukuda (2000) Pretreatment of immobilized Candida antarctica lipase for biodiesel fuel production from plant oil. J. Biosci. Bioeng. 90: 180-183
  8. Murty, V. R., J. Bhat, and P. K. A. Muniswaran (2002) Hydrolysis of oils by using immobilized lipase enzyme: a review. Biotechnol. Bioprocess Eng. 7: 57-66 https://doi.org/10.1007/BF02935881
  9. Hwang, S. and I.-S. Ahn (2005) Stability analysis of Bacillus stearothermopilus L1 lipase fused with a cellulosebinding domain. Biotechnol. Bioprocess Eng. 10: 329-333 https://doi.org/10.1007/BF02931850
  10. Park, S.-C., W.-J. Chang, S.-M. Lee, Y.-J. Kim, and Y.-M. Koo (2005) Lipase-catalyzed transesterification in several reaction systems: an application of room temperature ionic liquids for bi-phasic production of n-butyl acetate. Biotechnol. Bioprocess Eng. 10: 99-102 https://doi.org/10.1007/BF02931190
  11. Balcao, V. M., A. L. Paiva, and F. X. Malcata (1996) Bioreactors with immobilized lipases: state of the art. Enzyme Microb. Technol. 18: 392-416 https://doi.org/10.1016/0141-0229(95)00125-5
  12. Kaieda, M., T. Samukawa, T. Matsumoto, K. Ban, A. Kondo, Y. Shimada, H. Noda, F. Nomoto, K. Ohtsuka, E. Izumoto, and H. Fukuda (1999) Biodiesel fuel production from plant oil catalyzed by Rhizopus oryzae lipase in a water- containing system without and organic solvent. J. Biosci. Bioeng. 88: 627-631 https://doi.org/10.1016/S1389-1723(00)87091-7
  13. Soumanou, M. M. and U. T. Bornscheuer (2003) Lipasecatalyzed alcoholysis of vegetable oils. Eur. J. Lipid Sci. Technol. 105: 656-660 https://doi.org/10.1002/ejlt.200300871
  14. Shimada, Y., Y. Watanabe, A. Sugihara, and Y. Tominaga (2002) Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J. Mol. Catal., B Enzym. 17: 133-142 https://doi.org/10.1016/S1381-1177(02)00020-6
  15. Matori, M., T. Asahara, and Y. Ota (1991) Positional specificity of microbial lipases. J. Ferment. Bioeng. 72: 397-398 https://doi.org/10.1016/0922-338X(91)90094-W
  16. Iso, M., B. Chen, M. Eguchi, T. Kudo, and S. Shrestha (2001) Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J. Mol. Catal., B Enzym. 17: 157-165 https://doi.org/10.1016/S1381-1177(02)00023-1
  17. Noureddini, H., X. Gao, and R. S. Philkana (2005) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour. Technol. 96: 769-777 https://doi.org/10.1016/j.biortech.2004.05.029
  18. Yang, J.-S., G.-J. Jeon, B.-K. Hur, and J.-W. Yang (2005) Enzymatic methanolysis of castor oil for the synthesis of methyl ricinoleate in a solvent-free medium. J. Microbiol. Biotechnol. 15: 1183-1188
  19. Kaieda, M., T. Samukawa, A. Kondo, and H. Fukuda (2001) Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. J. Biosci. Bioeng. 91: 12-15 https://doi.org/10.1263/jbb.91.12