DOI QR코드

DOI QR Code

Optimization of the Process for Biodiesel Production Using a Mixture of Immobilized Rhizopus oryzae and Candida rugosa Lipases

  • Lee, Jong-Ho (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee, Dong-Hwan (Department of Chemical and Biological Engineering, Korea University) ;
  • Lim, Jung-Soo (Digital Appliances R&D Team, Samsung Electronics Co. Ltd.) ;
  • Um, Byung-Hwan (Department of Chemical and Biological Engineering, University of Maine) ;
  • Park, Chul-Hwan (Department of Chemical Engineering, Kwangwoon University) ;
  • Kang, Seong-Woo (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Seung-Wook (Department of Chemical and Biological Engineering, Korea University)
  • Published : 2008.12.31

Abstract

In this study, the enzymatic process for biodiesel production was optimized using a mixture of immobilized Rhizopus oryzae and Candida rugosa lipases. The optimal temperature and agitation speed for biodiesel production were $45^{\circ}C$ and 300 rpm, respectively. The optimal ratio of R. oryzae and C. rugosa lipases in the mixture was 3:1 (w:w). When 3 mmol of methanol was the initial reaction medium and 3 mmol of methanol was added every 1.5 h during biodiesel production, biodiesel conversion was over 98% at 4 h. In addition, when the immobilized lipase mixture was reused, biodiesel conversion exceeded 80% after 5 reuses.

Keywords

References

  1. Fukuda, H., A. Kondo, and H. Noda. 2001. Biodiesel fuel production by transesterification of oils. J. Biosci. Bioeng. 92: 405-416 https://doi.org/10.1263/jbb.92.405
  2. Gao, Y., T. W. Tan, K. L. Nie, and F. Wang. 2006. J. Biotech. 22: 127-133
  3. Kaieda, M., T. Samukawa, T. Matsumoto, K. Ban, A. Kondo, Y. Shimada, et al. 1999. Biodiesel fuel production from plant oil catalyzed by Rhizopus oryzae lipase in a water-containing system without an organic solvent. J. Biosci. Bioeng. 88: 627-631 https://doi.org/10.1016/S1389-1723(00)87091-7
  4. Lai, C. C., S. Zullaikah, S. R. Vali, and Y. H. Ju. 2005. Lipasecatalyzed production of biodiesel from rice bran oil. J. Chem. Technol. Biotechnol. 80: 331-337 https://doi.org/10.1002/jctb.1208
  5. Lee, D. H., C. H. Park, J. M. Yeo, and S. W. Kim. 2006. Lipase immobilization on silica gel using a cross-linking method. J. Ind. Eng. Chem. 12: 777-782
  6. Lee, D. H., J. M. Kim, H. Y. Shin, and S. W. Kim. 2006. Biodiesel production using a mixture of immobilized Rhizopus oryzae and Candida rugosa lipases. Biotechnol. Bioprocess Eng. 11: 522-525 https://doi.org/10.1007/BF02932077
  7. Lee, D. H., J. M. Kim, S. W. Kang, J. W. Lee, and S. W. Kim. 2006. Pretreatment of lipase with soybean oil before immobilization to prevent loss of activity. Biotech. Lett. 28: 1965-1969 https://doi.org/10.1007/s10529-006-9181-9
  8. Lee, D. H., J. M. Kim, H. Y. Shin, and S. W. Kim. 2007. Optimization of lipase pretreatment prior to lipase immobilization to prevent loss of activity. J. Microbiol. Biotechnol. 17: 650-654
  9. Lifka, J. and B. Ondruschka. 2004. Influence of mass transfer on the production of biodiesel. Chem. Eng. Technol. 27: 1156-1159 https://doi.org/10.1002/ceat.200407033
  10. Oda, M., M. Kaieda, S. Mana, H. Yamaji, A. Kondo, E. Izumoto, and H. Fukuda. 2005. Facilitatory effect of immobilized lipaseproducing Rhizopus oryzae cells on acyl migration in biodieselfuel production. Biochem. Eng. J. 23: 45-51 https://doi.org/10.1016/j.bej.2004.10.009
  11. Praveen, R. M., C. B. Scott, and N. Hossein. 1996. Improved conversion of plant oils and animal fats into biodiesel and coproduct. Bioresource Technol. 56: 19-24 https://doi.org/10.1016/0960-8524(95)00178-6
  12. Pizarro, A. V. L. and E. Y. Park. 2003. Lipase-catalysed production of biodiesel fuel from vegetable oils contained in waste activated bleaching earth. Process Biochem. 38: 1077-1082 https://doi.org/10.1016/S0032-9592(02)00241-8
  13. Shieh, C. J., H. F. Liao, and C. C. Lee. 2003. Optimization of lipase-catalyzed biodiesel by response surface methodology. Bioresource Technol. 88: 103-106 https://doi.org/10.1016/S0960-8524(02)00292-4
  14. Shimada, Y., Y. Watanabe, T. Samukawa, A. Sugihara, H. Noda, and H. Fukuda. 1999. Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. J. Am. Oil Chem. Soc. 76: 789-793 https://doi.org/10.1007/s11746-999-0067-6
  15. Shimada, Y., Y. Watanabe, A. Sugihara, and Y. Tominaga. 2002. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J. Mol. Catal. B Enz. 17: 133-142 https://doi.org/10.1016/S1381-1177(02)00020-6
  16. Yang, J. S., G. J. Jeon, B. K. Hur, and J. W. Yang. 2005. Enzymatic methanolysis of castor oil for the synthesis of methyl ricinoleate in a solvent-free medium. J. Microbiol. Biotechnol. 15: 1183-1188
  17. Yoon, M.-Y., P.-K. Shim, Y.-S. Han, S.-H. Lee, J.-K. Park, and C.-S. Cheong. 2004. Isolation of an Acinetobacter junii SY-01 strain producing an extracellular lipase enantioselectively hydrolyzing itraconazole precursor, and some properties of the lipase. J. Microbiol. Biotechnol. 14: 97-104

Cited by

  1. Combi-lipase for heterogeneous substrates: a new approach for hydrolysis of soybean oil using mixtures of biocatalysts vol.4, pp.14, 2008, https://doi.org/10.1039/c3ra45969a
  2. Immobilization of Lipase on Silver Nanoparticles via Adhesive Polydopamine for Biodiesel Production vol.2014, pp.None, 2008, https://doi.org/10.1155/2014/389739
  3. Investigation of the Reuse of Immobilized Lipases in Biodiesel Synthesis: Influence of Different Solvents in Lipase Activity vol.179, pp.3, 2008, https://doi.org/10.1007/s12010-016-2008-9
  4. Lipase B from Candida antarctica Immobilized on a Silica-Lignin Matrix as a Stable and Reusable Biocatalytic System vol.7, pp.1, 2008, https://doi.org/10.3390/catal7010014
  5. Biodiesel fuel production by enzymatic microalgae oil transesterification with ethanol vol.9, pp.2, 2008, https://doi.org/10.1063/1.4978369
  6. Enzymatic microalgae oil transesterification with ethanol in mineral diesel fuel media vol.10, pp.1, 2018, https://doi.org/10.1063/1.5012939
  7. Improving the Yields and Reaction Rate in the Ethanolysis of Soybean Oil by Using Mixtures of Lipase CLEAs vol.24, pp.23, 2008, https://doi.org/10.3390/molecules24234392
  8. Multi-Combilipases: Co-Immobilizing Lipases with Very Different Stabilities Combining Immobilization via Interfacial Activation and Ion Exchange. The Reuse of the Most Stable Co-Immobilized Enzymes af vol.10, pp.10, 2020, https://doi.org/10.3390/catal10101207
  9. Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution? vol.164, pp.None, 2008, https://doi.org/10.1016/j.renene.2020.10.071