DOI QR코드

DOI QR Code

Improvement of Amidase Production by a Newly Isolated Delftia tsuruhatensis ZJB-05174 Through Optimization of Culture Medium

  • Published : 2008.12.31

Abstract

The R-amidase production by a newly isolated strain of Delftia tsuruhatensis ZJB-05174 was optimized in this paper. Effects of factors such as carbon sources, nitrogen sources, and inducers on amidase production were investigated. The medium composition was optimized using central composite designs and response surface analysis. The optimal medium components for enhanced amidase production were found to be as follows: glucose, 8.23 g/l; yeast extract, 11.59 g/l; 2,2-(R,S)-dimethylcyclopropane carboxamide, 1.76 g/l; NaCl, 1 g/l; ${KH_2}{PO_4}$ 1 g/l; and ${K_2}{HPO_4}$ 1 g/l. A maximum enzyme production of 528.21 U/l was obtained under the optimized conditions, which was 4.7 times higher than that obtained under initial conditions.

Keywords

References

  1. Adinarayana, K. and P. Ellaiah. 2002. Response surface optimization of the critical medium components for the production of alkaline protease by a newly isolated Bacillus sp. J. Pharm. Sci. 5: 272-278
  2. Baek, D. H., S. J. Kwon, S. P. Hong, M. S. Kwak, M. H. Lee, J. J. Song, S. G. Lee, K. H. Yoon, and M. H. Sung. 2003. Characterization of a thermostable D-stereospecific alanine amidase from Brevibacillus borstelensis BCS-1. Appl. Environ. Microbiol. 69: 980-986 https://doi.org/10.1128/AEM.69.2.980-986.2003
  3. Birnbaum, J., F. M. Kahan, H. Kropp, and J. S. Macdonald. 1985. Carbapenems, a new class of beta-lactam antibiotics: Discovery and development of imipenem/cilastatin. Am. J. Med. 78: 3-21
  4. Bommarius, A. S. and B. R. Riebel. 2004. Biocatalysis, pp. 1- 14. Wiley-VCH Verlag GmbH & Co. KGaA, Weiheim
  5. Chauhan, K., U. Trivedi, and K. C. Patel. 2006. Application of response surface methodology for optimization of lactic acid production using date juice. J. Microbiol. Biotechnol. 16: 1410-1415
  6. Hann, E. C., A. E. Sigmund, S. K. Fager, F. B. Cooling, J. E. Gavagan, M. G. Bramucci, S. Chauhan, M. S. Payne, and R. DiCosimo. 2004. Regioselective biocatalytic hydrolysis of (E,Z)-2-methyl-2-butenenitrile for production of (E)-2-methyl-2- butenoic acid. Tetrahedron 60: 577-581 https://doi.org/10.1016/j.tet.2003.10.120
  7. Hensel, M., S. Lutz-Wahl, and L. Fischer. 2002. Stereoselective hydration of (R,S)-phenylglycine nitrile by new whole cell biocatalysts. Tetrahedron 13: 2629-2633 https://doi.org/10.1016/S0957-4166(02)00751-6
  8. Hermes, H. F. M., R. F. Tandler, T. Sonke, L. Dijkhuizen, and E. M. Meijer. 1994. Purification and characterization of an Lamino amidase from Mycobacterium neoaurum ATCC 25795. Appl. Environ. Microbiol. 60: 153-159
  9. Hongpattarakere, T., H. Komeda, and Y. Asano. 2005. Purification, characterization, gene cloning and nucleotide sequencing of Dspecific amino acid amidase from soil bacterium: Delftia acidovorans. J. Ind. Microbiol. Biotechnol. 32: 567-576 https://doi.org/10.1007/s10295-005-0246-x
  10. Huisman, G. W. and D. Gray. 2002. Towards novel processes for the fine-chemical and pharmaceutical industries. Curr. Opin. Biotechnol. 13: 352-358 https://doi.org/10.1016/S0958-1669(02)00335-X
  11. Joeres, U. and M. R. Kula. 1994. Screening for a novel enzyme hydrolyzing L-carnitine amide. Appl. Microbiol. Biotechnol. 40: 599-605 https://doi.org/10.1007/BF00173314
  12. Kakeya, H., N. Sakai, T. Sugai, and H. Ohta. 1991. Microbial hydrolysis as a potent method for the preparation of optically active nitriles, amides and carboxylic acids. Tetrahed. Lett. 32: 1343-1346 https://doi.org/10.1016/S0040-4039(00)79663-8
  13. Kobayashi, M., H. Komeda, T. Nagasawa, H. Yamada, and S. Shimizu. 1993. Occurrence of amidases in the industrial microbe Rhodococcus rhodochrous J1. Biosci. Biotechnol. Biochem. 57: 1949-1950 https://doi.org/10.1271/bbb.57.1949
  14. Krieg, L., M. B. Ansorge-Schumacher, and M. R. Kula. 2002. Screening for amidases: Isolation and characterization of a novel D-amidase from Variovorax paradoxus. Adv. Synth. Catal. 344: 965-973 https://doi.org/10.1002/1615-4169(200210)344:9<965::AID-ADSC965>3.0.CO;2-Z
  15. Li, Yin., F. J. Cui, Z. Q. Liu, Y. Y. Xu, and H. Zhao. 2007. Improvement of xylanase production by Penicillium oxalicum ZH-30 using response surface methodology. Enzyme Microb. Technol. 40: 1381-1388 https://doi.org/10.1016/j.enzmictec.2006.10.015
  16. Liang, L. Y., Y. G. Zheng, and Y. C. Shen. 2008. Optimization of $\beta$-alanine production from $\beta$-aminopropionitrile by resting cells of Rhodococcus sp. G20 in a bubble column reactor using response surface methodology. Process Biochem. 43: 758-764 https://doi.org/10.1016/j.procbio.2008.03.002
  17. Liu, Z. Q., Z. C. Hu, Y. G. Zheng, and Y. C. Shen. 2008. Optimization of cultivation conditions for the production of 1,3- dihydroxyacetone by Pichia membranifaciens using response surface methodology. Biochem. Eng. J. 38: 285-291 https://doi.org/10.1016/j.bej.2007.07.015
  18. Martinkova, L., V. Kren, L. Cvak, M. Ovesna, and I. Prepechalova. 2000. Hydrolysis of lysergamide to lysergic acid by Rhodococcus equi A4. J. Biotechnol. 84: 63-66 https://doi.org/10.1016/S0168-1656(00)00332-1
  19. Raoa, Y. K., S. C. Lu, B. L. Liu, and Y. M. Tzeng. 2006. Enhanced production of an extracellular protease from Beauveria bassiana by optimization of cultivation processes. Biochem. Eng. J. 28: 57-66 https://doi.org/10.1016/j.bej.2005.09.005
  20. Singh, B. and T. Satyanarayana. 2008. Improved phytase production by a thermophilic mould Sporotrichum thermophile in submerged fermentation due to a statistical optimization. Bioresour. Technol. 99: 824-830 https://doi.org/10.1016/j.biortech.2007.01.007
  21. Soni, P., M. Singh, A. L. Kamble, and U. C. Ban. 2007. Response surface optimization of the critical medium components for carbonyl reductase production by Candida viswanathii MTCC 5158. Bioresour. Technol. 98: 829-833 https://doi.org/10.1016/j.biortech.2006.03.008
  22. Sonke, T., S. Ernste, R. F. Tandler, B. Kaptein, W. P. H. Peeters, F. B. J. van Assema, M. G. Wubbolts, and H. E. Schoemaker. 2005. L-Selective amidase with extremely broad substrate specificity from Ochrobactrum anthropi NCIMB 40321. Appl. Environ. Microbiol. 71: 7961-7973 https://doi.org/10.1128/AEM.71.12.7961-7973.2005
  23. Straathof, A. J. J., S. Panke, and A. Schmid. 2002. The production of fine chemicals by biotransformations. Curr. Opin. Biotechnol. 13: 548-556 https://doi.org/10.1016/S0958-1669(02)00360-9
  24. Trott, S., S. Bürger, C. Calaminus, and A. Stolx. 2002. Cloning and heterologous expression of an enantioselective amidase from Rhodococcus erythropolis strain MP50. Appl. Environ. Microbiol. 68: 3279-3286 https://doi.org/10.1128/AEM.68.7.3279-3286.2002
  25. Yamamoto, K., K. Otsubo, A. Matsuo, T. Hayashi, I. Fujimatsu, and K. Komatsu. 1996. Production of R-(-)-ketoprofen from an amide compound by Comamonas acidovorans KPO-2771-4. Appl. Environ. Microbiol. 62: 152-155
  26. Yeom, S. J., H. J. Kim, and D. K. Oh, 2007. Enantioselective production of 2,2-dimethylcyclopropane carboxylic acid from 2,2-dimethylcyclopropane carbonitrile using the nitrile hydratase and amidase of Rhodococcus erythropolis ATCC 25544. Enzyme Microb. Technol. 41: 842-848 https://doi.org/10.1016/j.enzmictec.2007.07.007
  27. Zheng, R. C., Y. G. Zheng, and Y. C. Shen. 2007. A screening system for active and enantioselective amidase based on its acyl transfer activity. Appl. Microbiol. Biotechnol. 74: 256-262 https://doi.org/10.1007/s00253-006-0642-9
  28. Zheng, R. C., Y. G. Zheng, and Y. C. Shen. 2007. Enantioseparation and determination of 2,2-dimethylcyclopropanecarboxamide and corresponding acid in the bioconversion broth by gas chromatography. Biomed. Chromatogr. 21: 610-615 https://doi.org/10.1002/bmc.793
  29. Zheng, R. C., Y. S. Wang, Z. Q. Liu, L. Y. Xing, Y. G. Zheng, and Y. C. Shen. 2007. Isolation and characterization of Delftia tsuruhatensis ZJB-05174, capable of R-enantioselective degradation of 2,2-dimethylcyclopropanecarboxamide. Res. Microbiol. 158: 258-264 https://doi.org/10.1016/j.resmic.2006.12.007

Cited by

  1. Screening, cultivation, and biocatalytic performance of Rhodococcus boritolerans FW815 with strong 2,2-dimethylcyclopropanecarbonitrile hydratase activity vol.39, pp.3, 2008, https://doi.org/10.1007/s10295-011-1029-1
  2. A review of the interactions between acrylamide, microorganisms and food components vol.7, pp.3, 2008, https://doi.org/10.1039/c5fo01294e
  3. Enhanced production of thermostable amidase from Geobacillus subterraneus RL-2a MTCC 11502 via optimization of physicochemical parameters using Taguchi DOE methodology vol.6, pp.1, 2008, https://doi.org/10.1007/s13205-016-0390-1