• 제목/요약/키워드: Retrial queue

검색결과 34건 처리시간 0.021초

Approximation of M/G/c Retrial Queue with M/PH/c Retrial Queue

  • Shin, Yang-Woo;Moon, Dug-Hee
    • Communications for Statistical Applications and Methods
    • /
    • 제19권1호
    • /
    • pp.169-175
    • /
    • 2012
  • The sensitivity of the performance measures such as the mean and the standard deviation of the queue length and the blocking probability with respect to the moments of the service time are numerically investigated. The service time distribution is fitted with phase type(PH) distribution by matching the first three moments of service time and the M/G/c retrial queue is approximated by the M/PH/c retrial queue. Approximations are compared with the simulation results.

TAIL ASYMPTOTICS FOR THE QUEUE SIZE DISTRIBUTION IN AN MX/G/1 RETRIAL QUEUE

  • KIM, JEONGSIM
    • Journal of applied mathematics & informatics
    • /
    • 제33권3_4호
    • /
    • pp.343-350
    • /
    • 2015
  • We consider an MX/G/1 retrial queue, where the batch size and service time distributions have finite exponential moments. We show that the tail of the queue size distribution is asymptotically given by a geometric function multiplied by a power function. Our result generalizes the result of Kim et al. (2007) to the MX/G/1 retrial queue.

ALGORITHMIC SOLUTION FOR M/M/c RETRIAL QUEUE WITH $PH_2$-RETRIAL TIMES

  • Shin, Yang-Woo
    • Journal of applied mathematics & informatics
    • /
    • 제29권3_4호
    • /
    • pp.803-811
    • /
    • 2011
  • We present an algorithmic solution for the stationary distribution of the M/M/c retrial queue in which the retrial times of each customer in orbit are of phase type distribution of order 2. The system is modeled by the level dependent quasi-birth-and-death (LDQBD) process.

ANALYSIS OF M/M/c RETRIAL QUEUE WITH THRESHOLDS, PH DISTRIBUTION OF RETRIAL TIMES AND UNRELIABLE SERVERS

  • CHAKRAVARTHY, SRINIVAS R.;OZKAR, SERIFE;SHRUTI, SHRUTI
    • Journal of applied mathematics & informatics
    • /
    • 제39권1_2호
    • /
    • pp.173-196
    • /
    • 2021
  • This paper treats a retrial queue with phase type retrial times and a threshold type-policy, where each server is subject to breakdowns and repairs. Upon a server failure, the customer whose service gets interrupted will be handed over to another available server, if any; otherwise, the customer may opt to join the retrial orbit or depart from the system according to a Bernoulli trial. We analyze such a multi-server retrial queue using the recently introduced threshold-based retrial times for orbiting customers. Applying the matrix-analytic method, we carry out the steady-state analysis and report a few illustrative numerical examples.

ON APPROXIMATIONS FOR GI/G/c RETRIAL QUEUES

  • Shin, Yang Woo;Moon, Dug Hee
    • Journal of applied mathematics & informatics
    • /
    • 제31권1_2호
    • /
    • pp.311-325
    • /
    • 2013
  • The effects of the moments of the interarrival time and service time on the system performance measures such as blocking probability, mean and standard deviation of the number of customers in service facility and orbit are numerically investigated. The results reveal the performance measures are more sensitive with respect to the interarrival time than the service time. Approximation for $GI/G/c$ retrial queues using $PH/PH/c$ retrial queue is presented.

THE M/G/1 FEEDBACK RETRIAL QUEUE WITH BERNOULLI SCHEDULE

  • Lee, Yong-Wan;Jang, Young-Ho
    • Journal of applied mathematics & informatics
    • /
    • 제27권1_2호
    • /
    • pp.259-266
    • /
    • 2009
  • We consider an M/G/1 feedback retrial queue with Bernoulli schedule in which after being served each customer either joins the retrial group again or departs the system permanently. Using the supplementary variable method, we obtain the joint generating function of the numbers of customers in two groups.

  • PDF

MMPP,M/G/1 retrial queue with two classes of customers

  • Han, Dong-Hwan;Lee, Yong-Wan
    • 대한수학회논문집
    • /
    • 제11권2호
    • /
    • pp.481-493
    • /
    • 1996
  • We consider a retrial queue with two classes of customers where arrivals of class 1(resp. class 2) customers are MMPP and Poisson process, respectively. In the case taht arriving customers are blocked due to the channel being busy, the class 1 customers are queued in priority group and are served as soon as the channel is free, whereas the class 2 customers enter the retrial group in order to try service again after a random amount of time. We consider the following retrial rate control policy, which reduces their retrial rate as more customers join the retrial group; their retrial times are inversely proportional to the number of customers in the retrial group. We find the joint generating function of the numbers of custormers in the two groups by the supplementary variable method.

  • PDF

AN APPROXIMATION FOR THE QUEUE LENGTH DISTRIBUTION IN A MULTI-SERVER RETRIAL QUEUE

  • Kim, Jeongsim
    • 충청수학회지
    • /
    • 제29권1호
    • /
    • pp.95-102
    • /
    • 2016
  • Multi-server queueing systems with retrials are widely used to model problems in a call center. We present an explicit formula for an approximation of the queue length distribution in a multi-server retrial queue, by using the Lerch transcendent. Accuracy of our approximation is shown in the numerical examples.

THE ${M_1},{M_/2}/G/l/K$ RETRIAL QUEUEING SYSTEMS WITH PRIORITY

  • Choi, Bong-Dae;Zhu, Dong-Bi
    • 대한수학회지
    • /
    • 제35권3호
    • /
    • pp.691-712
    • /
    • 1998
  • We consider an M$_1$, M$_2$/G/1/ K retrial queueing system with a finite priority queue for type I calls and infinite retrial group for type II calls where blocked type I calls may join the retrial group. These models, for example, can be applied to cellular mobile communication system where handoff calls have higher priority than originating calls. In this paper we apply the supplementary variable method where supplementary variable is the elapsed service time of the call in service. We find the joint generating function of the numbers of calls in the priority queue and the retrial group in closed form and give some performance measures of the system.

  • PDF

TRANSIENT DISTRIBUTIONS OF LEVEL DEPENDENT QUASI-BIRTH-DEATH PROCESSES WITH LINEAR TRANSITION RATES

  • Shin, Yang-Woo
    • Journal of applied mathematics & informatics
    • /
    • 제7권1호
    • /
    • pp.83-100
    • /
    • 2000
  • Many queueing systems such as M/M/s/K retrial queue with impatient customers, MAP/PH/1 retrial queue, retrial queue with two types of customers and MAP/M/$\infty$ queue can be modeled by a level dependent quasi-birth-death(LDQBD) process with linear transition rates of the form ${\lambda}_k$={\alpga}{+}{\beta}k$ at each level $\kappa$. The purpose of this paper is to propose an algorithm to find transient distributions for LDQBD processes with linear transition rates based on the adaptive uniformization technique introduced by van Moorsel and Sanders [11]. We apply the algorithm to some retrial queues and present numerical results.