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ANALYSIS OF M/M/c RETRIAL QUEUE WITH
THRESHOLDS, PH DISTRIBUTION OF RETRIAL TIMES

AND UNRELIABLE SERVERS

SRINIVAS R. CHAKRAVARTHY∗, SERIFE OZKAR, AND SHRUTI

Abstract. This paper treats a retrial queue with phase type retrial times
and a threshold type-policy, where each server is subject to breakdowns and
repairs. Upon a server failure, the customer whose service gets interrupted
will be handed over to another available server, if any; otherwise, the cus-
tomer may opt to join the retrial orbit or depart from the system according
to a Bernoulli trial. We analyze such a multi-server retrial queue using the
recently introduced threshold-based retrial times for orbiting customers.
Applying the matrix-analytic method, we carry out the steady-state anal-
ysis and report a few illustrative numerical examples.
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1. Introduction

Queueing systems with repeated calls, referred to as retrial queueing systems
in the literature, are characterized by the feature that an arriving customer not
able to get into service immediately will join the retrial orbit. These orbiting
customers attempt, after random interval times, to enter into the service facility.
Such classical retrial systems have been widely used to model many applications
in telecommunication networks, computer and communication systems, cellular
mobile networks and local area networks (see, e.g.,[2, 11, 20]).

There are several variations and generalizations of the classical retrial queues.
A significant part of the existing literature on retrial queues assume the service
environment to be one hundred percent reliable. However, in reality, the servers
may be subject to random breakdowns for many reasons and hence require recov-
ery (repair) time. During such times the servers are unavailable. Such situations
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are common, especially in manufacturing and communications systems. Conse-
quently, the performance of the system gets significantly affected, leading to the
study of retrial queueing systems with servers subject to breakdowns and repairs
(see e.g., [6, 7, 17, 22, 28]).

Most of the works on retrial queues with unreliable environment for the service
facility deal with a single server. Indeed, it is well known that investigating
multi-server queues is, in general, more complicated than investigating single
server queues. Nevertheless, multi-server unreliable retrial queues are much more
flexible and applicable in practice than single server unreliable retrial queues.
The literature devoted to multi-server retrial queues with servers subject to
breakdowns is not very rich. We can refer only to the following papers. Kim et
al. [16] were the first to investigate a multi-server retrial queue with breakdowns.
It was assumed in [16] that the breakdowns occur according to a MAP , the
server recovery time has a phase type distribution and that the retrial times
are exponentially distributed. Note that MAP is a versatile Markovian point
process introduced by Neuts [18] and studied extensively in the literature.

Using the direct truncation method, an M/M/c retrial queue under break-
downs and repairs of the servers was studied by Subramanian [26]. In order
to deal with the huge state space in the study of a multi-server retrial queue
with finite source and unreliable servers, Ghrabi and Dutheillet [12] proposed
an algorithm for directly computing the infinitesimal generator without a need
to generate the Markov chain. Later, Raiah and Oukid [21] provided approx-
imations for the reliability indices, in particular, server availability and failure
frequency, of an unreliable M/M/2 retrial queue.

An M/M/c retrial queue with Bernoulli feedback, geometric loss, and servers
subject to breakdowns and repairs was examined by Ke et al. [15] under the
assumption of exponential retrial times. Chang et al. [5] analyzed a feedback
retrial queue with multiple unreliable servers, balking and reneging, by assuming
exponential distribution for all random variables.

Recently, Dudin and Dudina [9] studied a retrial multi-server queueing system
with MAP arrivals and so-called PHF (phase-type with failures) service time
distribution as a model of a channel with unreliable transmission of information.
Specifically, the authors in [9] use a finite-state Markov chain with two absorbing
states for the service time distribution such that one absorbing state corresponds
to a service completion and the other absorbing state corresponds to the failure of
a service as opposed to the failure of the server. That is, there is no concept of the
server being sent for a repair; instead, the customer who is interrupted through
such a failure will either (a) start a new service; or (b) sent back to the orbit
to retry again; or (c) resume the service from the phase from where the failure
occurred. One of these three possibilities occur with certain probabilities. Thus,
there is no need for the model studied in [9] to have a repair facility. Assuming
retrial times to be exponential, the authors use asymptotically quasi-Toeplitz
Markov chain approach to analyze their model in steady-state.
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In much of the literature on retrial queues, on the other hand, the retrial times
are assumed to be exponentially distributed with the exception of a few papers
(see e.g., [1, 3, 8, 14, 27]). Also, Shin [23] investigated an M/M/c retrial queue
with retrial times of phase type (PH−) restricted to order two (due to inherent
complexity created by size of the underlying state space). Later, relaxing the
assumption of PH2 retrial time, Shin and Moon [24] presented an approximation
for the distribution of the number of customers in the orbit as well as for those
under service. Recall that PH−type distributions were introduced by Neuts [19].

The few studies in which non-exponential retrial times such as phase type
retrial times are assumed, develop a variety of approximation methods or put
a bound on the retrial orbit. These are mainly due to the complexity involved
in keeping track of the elapsed retrial time for each of possibly extremely large
number of customers in the orbit. As pointed out in [10], threshold-type pol-
icy is also optimal for retrial queues as for the ordinary queues. Assuming a
finite capacity retrial orbit with MAP arrivals and PH−services, Efrosinin and
Breuer [10] show that the optimal policy that minimizes the number of customers
in the system is of a threshold-type. It is worth pointing out that in the context
of a general retrial distribution but with the restriction that only the customer,
if any, at the head of the retrial orbit is allowed to retry once the server becomes
idle, Gomez-Corral [13] studied a retrial queueing model in steady-state.

With the aim of including PH−retrial times while not significantly increasing
the complexity of the retrial queueing model, recently Chakravarthy [4] proposed
a different approach introducing the concept of threshold based PH−retrial
times. This threshold based approach enabled to study the model without the
worry of exploding state space. It was shown in [4] how that threshold model
can be used to approximate the classical retrial queueing model with phase type
retrials.-type policy for the customers waiting in the retrial orbit. It should be
pointed out that the threshold-type policy adopted in [10] is only at the points
of arrivals (either new or from retrial orbit), whereas the one adopted in [4] is
based on those waiting in the retrial orbit. To the best of our knowledge there
is no literature that employs a threshold-type policy for the waiting customers
in the retrial orbit until the recent publication of [4].

The queueing model considered in the present paper generalizes the threshold-
type retrial queueing model investigated in [4] to the case of unreliable servers.
Note that when the failure rate goes to zero or the repair rate goes to infinity
we get the model in [4]. Upon a server failure, the interrupted customer is
allowed to handoff, that is, to access another available server so as to complete its
ongoing service. Moreover, taking into consideration their impatience behavior,
the interrupted customers either may choose to enter into the retrial orbit or
abandon forever according to a Bernoulli trial.

The rest of the paper is organized as follows. In Section 2, we describe the
threshold-type unreliable retrial queueing model considered here in full detail.
Section 3 deals with the steady-state analysis of the proposed model. The sta-
bility condition and the steady-state probability vector are obtained using the
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matrix-analytic method. In Section 4, some important performance measures
and reliability indices of this model are derived. Some illustrative numerical
examples are presented in Section 5 and a few concluding remarks are given in
Section 6.

2. Model description

In this paper we study a threshold-type retrial queueing model that consists
of c (c ≥ 1) identical and parallel servers subject to random breakdowns and
repairs as demonstrated in Figure 1.

Server 1

Server 2

Server c

Server 1

Server 2

Server c
If the number of customers is in 
[ (k-1)N+1 , kN ] where 1 ≤ k ≤ K

If the number of customers 
exceeds KN

Service facility
(exponential, μ)

Repair facility
(exponential, δ)

Poisson process, λ

Orbit (retrial buffer)

α

δ

Customer with complete service departs
Customer with incomplete service departs

Customer with incomplete service joins the orbit

1-pp

Unsatisfied
customer ⋮ ⋮

Figure 1. Threshold retrial unreliable queueing system.

Each server can be in down (non-operational) or up (operational) state, and
it can be idle or busy (on service). The basic assumptions of the model under
study are as follows.

• Customers arrive according to a Poisson process with rate λ.
• Service times of customers are independent of each other and have a
common exponential distribution with parameter µ.

• An arriving customer, finding all the servers busy or down, will join a
retrial orbit of infinite capacity. The customer in orbit repeats its request
after random amount of time until it gets into the service facility.

• The retrial time distribution is of phase type with rate dictated by two
threshold parameters, N , 1 ≤ N < ∞, and K, 1 ≤ K < ∞. That
is, when the number of retrial customers in the orbit is in the interval
[(k − 1)N + 1, kN ], 1 ≤ k ≤ K, the retrial times are of phase type
with representation (β, θkS) of order n. Once the number in the re-
trial orbit exceeds KN , the retrial times follow PH− distribution with
representation (β, θS) of order n. This is adopted from [4].

• While serving a customer, the servers are subject to accidental break-
downs, independently of each other. The breakdowns are assumed to
occur according to a Poisson process with failure rate of α per server.
Thus, if i servers are busy the failure rate will be iα.
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• As soon as a server fails, the failed server undergoes for repair imme-
diately. The repair time of the servers is assumed to be exponentially
distributed with a repair rate of δ per server. Also, each server has its
own repairman. The logic for this assumption is as follows. When the
system studied is such that the facility is located in different places and
when the server fails the fixing is done in that local station while the cus-
tomer can be (virtually) transferred to another idle server if any. Later
on, we will point out how this assumption can be relaxed.

• An interrupted customer due to the server failure will be processed by
an idle server, if any; otherwise, the customer joins the orbit with prob-
ability p, 0 ≤ p ≤ 1, or leaves the system with probability 1− p.

• We assume that the inter-arrival time, the service time, the retrial time,
and the repair time are all mutually independent.

Suppose that we define N(t) to be the number of customers in the retrial
orbit; J1(t) to be the number of failed servers; J2(t) to be the number of busy
servers; and J3(t) to be the phase of the retrial times (when N(t) > 0) at time t.
It is easy to verify that the process {N(t), J1(t), J2(t), J3(t) : t ≥ 0} is a Markov
process possessing the QBD-structure on the state space given by Ω =

∞∪
i=0

r(i),

where
r(0) = {(0, j1, j2) : 0 ≤ j1 ≤ c, 0 ≤ j2 ≤ c− j1}, and
r(i) = {(i, j1, j2, j3) : 0 ≤ j1 ≤ c, 0 ≤ j2 ≤ c− j1, 1 ≤ j3 ≤ n}, i ≥ 1.

Let 0 = {(0, j1, j2), 0 ≤ j1 ≤ c, 0 ≤ j2 ≤ c − j1} denote the set of states
corresponding to the system in which the retrial buffer is empty, j1 servers are
in breakdown and j2 servers are busy. The set of states i = {(i, j1, j2, j3) : 0 ≤
j1 ≤ c, 0 ≤ j2 ≤ c − j1, 1 ≤ j3 ≤ n}, for i ≥ 1, denotes the system that i
customers are in the retrial orbit with j1 failed servers and j2 busy servers, and
the underlying phase-type distribution is in phase j3. To make notation simpler
to understand when displaying the infinitesimal generator Q below, we group
the set of levels 1 through KN into K groups of N levels. The generator Q of
the Markov chain governing the system has a block-tridiagonal matrix structure
and is given by

Q =



B0 A0

C0 B1,1 A1

C2,1 B2,1

. . .

C3,1

. . . A1

. . . BK−1,1 A1

CK,1 BK,1 A2

C2 B A
C B A

. . . . . . . . .



. (1)
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Before we display the matrices appearing in Q, we need to set up some stan-
dard notation for use in sequel. The column vector, e, consists of 1’s; ei is a
unit column vector with 1 in the ith position and 0 elsewhere; I is an identity
matrix; and ∆(T1, ..., Tr), a diagonal matrix with diagonal entries given by Ti,
i = 1, ..., r. These entries can be scalars, vectors, or matrices, and will be clear
from the context. The dimensions of these will be clear in the context where
they are used, and when more clarity is needed we will indicate the dimension.
The column vector S0 is such that Se + S0 = 0. The Kronecker product and
Kronecker sum (see, e.g.,[25]), respectively, are represented with the symbols ⊗
and ⊕. Finally, we define d̃ = 0.5(c+ 1)(c+ 2).

The matrices A, A0, A1, and A2 in the upper diagonal have dimensions (nd̃×
nd̃), (d̃×Nnd̃), (Nnd̃×Nnd̃) and (Nnd̃× nd̃), respectively.

A =


A1,0 A0,0

A1,1 A0,1

. . . . . .
A1,c−1 A0,c−1

A1,c

 , (2)

where

A0,j = (c− j) α p ec+1−j(c+ 1− j)⊗ [e′c−j(c− j)⊗ In], 0 ≤ j ≤ c− 1, and

A1,j = λ ec+1−j(c+ 1− j)⊗ [e′c+1−j(c+ 1− j)⊗ In], 0 ≤ j ≤ c.

A0 = e′1(N)⊗ Â, where Â =


Â1,0 Â0,0

Â1,1 Â0,1

. . . . . .
Â1,c−1 Â0,c−1

Â1,c

 , (3)

with

Â0,j = (c− j) α p ec+1−j(c+ 1− j)⊗ [e′c−j(c− j)⊗ β], 0 ≤ j ≤ c− 1,

Â1,j = λ ec+1−j(c+ 1− j)⊗ [e′c+1−j(c+ 1− j)⊗ β], 0 ≤ j ≤ c.

A1 = eN (N)⊗ [e′1(N)⊗A]. (4)

A2 = eN (N)⊗A. (5)
The matrices C, C0, Cr,1, and C2 in the lower diagonal have dimensions

(nd̃× nd̃), (Nnd̃× d̃), (Nnd̃×Nnd̃) and (nd̃×Nnd̃), respectively.

C = ∆(C0, C1, · · · , Cc−1, 0), (6)
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where

Cj = θ


0 S0β

0 S0β
. . . . . .

0 S0β
0


(c+1−j)n×(c+1−j)n

, 0 ≤ j ≤ c− 1.

C0 = e1(N)⊗ Ĉ where Ĉ = ∆(Ĉ0, Ĉ1, · · · , Ĉc−1, 0), (7)
with

Ĉj = θ1


0 S0

0 S0

. . . . . .
0 S0

0


(c+1−j)n×(c+1−j)

, 0 ≤ j ≤ c− 1.

Cr,1 = e1(N)⊗ [e′N (N)⊗ C̃r], 2 ≤ r ≤ K, (8)
where

C̃r = ∆(C̃r,0, C̃r,1, · · · , C̃r,c−1, 0),

with

C̃r,j = θr


0 S0β

0 S0β
. . . . . .

0 S0β
0


(c+1−j)n×(c+1−j)n

, 0 ≤ j ≤ c− 1.

C2 = e′N (N)⊗ C. (9)
The matrices B0, B, and Br,1 in the main diagonal have dimensions (d̃ × d̃),
(nd̃× nd̃) and (Nnd̃×Nnd̃), respectively.

B0 =



B̂1,0 B̂0,0

B̂2,1 B̂1,1 B̂0,1

B̂2,2
. . . . . .
. . . B̂1,c−1 B̂0,c−1

B̂2,c B̂1,c

 , (10)
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where

B̂2,j =


jδ

jδ
. . .

jδ 0


(c+1−j)×(c+2−j)

, 1 ≤ j ≤ c,

B̂0,j =



0
α

2α
. . .

(c− 1− j)α
(c− j)α(1− p)


(c+1−j)×(c−j)

, 0 ≤ j ≤ c− 1,

and

B̂1,j =



−λ− jδ λ

µ −λ− jδ − (µ+ α)
. . .

2µ
. . .
. . . λ

(c− j)µ −λ− jδ − (c− j)(µ+ α)

 , 0 ≤ j ≤ c.

B = ∆(B̂0, B̂1, · · · , B̂c−1, θ(S + S0β)) + (B0 ⊗ In), (11)

where

B̂j =


θS

θS
. . .

θS
θ(S + S0β)


(c+1−j)n×(c+1−j)n

, 0 ≤ j ≤ c− 1.

Br,1 =


Br A

C̃r
. . . . . .
. . . Br A

C̃r Br

 , 1 ≤ r ≤ K, (12)

where
Br = ∆(B̃0, B̃1, · · · , B̃c−1, θr(S + S0β)) + (B0 ⊗ In),
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with

B̃j =


θrS

θrS
. . .

θrS
θr(S + S0β)


(c+1−j)n×(c+1−j)n

, 0 ≤ j ≤ c−1.

A pictorial description of the transition diagram of the system is shown in Fig-
ure 2.
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Figure 2. State transition diagram of the system.

3. Steady state analysis

In this section, the model described in Section 2 will be studied in steady
state. We know that the stability condition of the classical retrial queueing
model is same as that of the classical queueing model [2]. That is, a retrial
queueing model of the type M/M/c in which all the customers waiting in the
retrial orbit (of infinite size) independently attempt to capture a free server is
stable if and only if λ < cµ. However, the moment one puts a restriction in the
way the retrials are modeled, the stability condition needs to be modified. For
example, Chakravarthy [4] established a stability condition for the threshold-
type retrial queueing model with multi servers. Similarly, we establish such a
stability condition for the model studied here.
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3.1. Stability condition. Let π be the steady-state probability vector of the fi-
nite generator F = A+B+C. That is, π = [π0

0 , π
1
0 , · · ·πc

0, π
0
1 , π

1
1 , · · · , πc−1

1 , · · · , π0
c ]

satisfies
πF = 0, πe = 1. (13)

The following theorem establishes the stability condition of the queueing system
under study.

Theorem 3.1. The threshold retrial unreliable queueing model under study with
the generator given in (1) is stable if and only if

λ < (1− p)α

c∑
i=1

iπi
c−ie+ µ

c∑
i=1

c−i∑
k=0

iπi
ke. (14)

Proof. The queuing system under study with the QBD type generator given
in (1) is stable (see, e.g., [19]) if and only if πAe < πCe. First note that the
equations in (13) reduce to

(c− j)απc−j
j e+ (c− j)µ

j∑
k=0

πc−j
k e = θ

j∑
k=0

πc−j−1
k S0 + λ

j∑
k=0

πc−j−1
k e, 1 ≤ j ≤ c− 1,

c(α+ µ)πc
0e = θπc−1

0 S0 + λπc−1
0 e,

c∑
k=0

c−k∑
i=0

πi
k = 1,

(15)
from which it is easy to obtain that

α

c−1∑
k=0

(c−k)πc−k
k e+µ

c−1∑
i=0

c−i∑
k=1

iπi
ke = θ

c−1∑
i=0

c−i−1∑
k=0

πi
kS

0+λ

[
1−

c∑
k=0

πc−k
k e

]
. (16)

Further, on noting that

πAe = λ

c∑
k=0

πc−k
k e+ αp

c−1∑
k=0

(c− k)πc−k
k e, πCe = θ

c−1∑
i=0

c−i−1∑
k=0

πi
kS

0, (17)

the proof follows immediately by using (16) and (17) for πAe < πCe. �

Let ρ = πAe
πCe denote the traffic intensity for our threshold model here.

3.2. Steady state probability vector. Let x = (x(0),x(1),x(2), · · · ) denote
the steady-state probability vector of the generator Q in (1). That is, x satisfies

xQ = 0, xe = 1. (18)
We partition the vectors x(i), for i ≥ 0, as x(i) = [x0(i),x1(i), · · · ,xc(i)] where,
xj(0) = [x0j (0), x

1
j (0), · · · , x

c−j
j (0)] and xj(i) = [x0

j (i),x
1
j (i), · · · ,x

c−j
j (i)], i ≥ 1
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and 0 ≤ j ≤ c. First, note that xj(0) is of dimension c+1− j, while xj(i), i ≥ 1
is of dimension (c + 1 − j)n. Secondly, the kth component of the vector xj(0)
i.e., xkj (0) gives the steady state probability vector that the retrial orbit is empty
with exactly j servers failed and k servers busy serving the customers; the rth
component of xk

j (i) gives the steady state probability vector that the retrial
orbit has i customers with exactly j servers failed, k servers busy serving the
customers, and that the underlying PH−distribution is in phase r, 1 ≤ r ≤ n.

Under the stability condition given in (14), the steady state vector, x, of the
threshold retrial queueing model with unreliable servers under study with the
generator given in (1) is obtained by solving the following system of linear equa-
tions:

x(0)B0 + x(1)Ĉ = 0,

x(0)Â+ x(1)B1 + x(2)C̃1 = 0,

x(i− 1)A+ x(i)B1 + x(i+ 1)C̃1 = 0, 2 ≤ i ≤ N − 1,

x(N − 1)A+ x(N)B1 + x(N + 1)C̃2 = 0,

x(i− 1)A+ x(i)Bj+1 + x(i+ 1)C̃j+1 = 0,
jN + 1 ≤ i ≤ (j + 1)N − 1, 1 ≤ j ≤ K − 1,

x(i− 1)A+ x(i)Bj + x(i+ 1)C̃j+1 = 0, i = jN, 2 ≤ j ≤ K − 1,

x(KN − 1)A+ x(KN)
[
BK +RC

]
= 0,∑KN−1

i=0 x(i)e+ x(KN)
(
I −R

)−1
e = 1,

(19)

where the (rate) matrix R is the minimal nonnegative solution to the matrix-
quadratic equation:

R2C +RB +A = 0. (20)

The QBD-structure of the generator given in (1), under the stability condition,
yields a modified matrix-geometric solution. Thus, the non-boundary states,
namely, for i ≥ KN are given by

x(i+KN) = x(KN)Ri, i ≥ 0. (21)

where the matrix R satisfies the matrix-quadratic equation given in (20). One
can use logarithmic reduction methods to compute R, especially when the di-
mension of R is of reasonable size.

The following lemma, which generalizes the one in [4] for the current model,
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will serve as an accuracy check in the numerical implementation of the steady-
state probability vector.

Lemma 3.2. We have

[ K∑
j=1

θj

jN∑
i=(j−1)N+1

x(i) + θx(KN)R(I −R)−1
]
(e⊗ I) = dβ(−S)−1, (22)

where d is the normalizing constant and is given by

d =
[ K∑
j=1

θj

jN∑
i=(j−1)N+1

x(i)e+ θx(KN)R(I −R)−1e
]
. (23)

Proof. First, we rewrite the equations for the steady-state probability vector, x
in (19). Replacing the last equation by x(KN − 1)A + x(KN)BK + x(KN +
1)C = 0 and x(i − 1)A + x(i)B + x(i + 1)C = 0, i ≥ KN + 1, the results are
given by
x0(0)B̂1,0 + x1(0)B̂2,1 + x0(1)Ĉ0 = 0,

xj−1(0)B̂0,j−1 + xj(0)B̂1,j + xj+1(0)B̂2,j+1 + xj(1)Ĉj = 0, 1 ≤ j ≤ c− 1,

xc−1(0)B̂0,c−1 + xc(0)B̂1,c = 0,

x0(0)Â1,0 + x0(1)
[
B̃0 + (B̂1,0 ⊗ In)

]
+ x1(1)

(
B̂2,1 ⊗ In

)
+ x0(2)C̃1,0 = 0,

xj−1(0)Â0,j−1 + xj(0)Â1,j + xj−1(1)
(
B̂0,j−1 ⊗ In

)
+ xj(1)

[
B̃j + (B̂1,j ⊗ In)

]
+xj+1(1)

(
B̂2,j+1 ⊗ In

)
+ xj(2)C̃1,j = 0, 1 ≤ j ≤ c− 1,

xc−1(0)Â0,c−1 + xc(0)Â1,c + xc−1(1)
(
B̂0,c−1 ⊗ In

)
+ xc(1)

[
B̃c + (B̂1,c ⊗ In)

]
= 0.

(24)
For 2 ≤ i ≤ N − 1,

x0(i− 1)A1,0 + x0(i)
[
B̃0 + (B̂1,0 ⊗ In)

]
+ x1(i)

(
B̂2,1 ⊗ In

)
+ x0(i+ 1)C̃1,0 = 0,

xj−1(i− 1)A0,j−1 + xj(i− 1)A1,j + xj−1(i)
(
B̂0,j−1 ⊗ In

)
+ xj(i)

[
B̃j + (B̂1,j ⊗ In)

]
+xj+1(i)

(
B̂2,j+1 ⊗ In

)
+ xj(i+ 1)C̃1,j = 0, 1 ≤ j ≤ c− 1,

xc−1(i− 1)A0,c−1 + xc(i− 1)A1,c + xc−1(i)
(
B̂0,c−1 ⊗ In

)
+xc(i)

[
B̃c + (B̂1,c ⊗ In)

]
= 0.

(25)
For i = N,

x0(N − 1)A1,0 + x0(N)
[
B̃0 + (B̂1,0 ⊗ In)

]
+ x1(N)

(
B̂2,1 ⊗ In

)
+ x0(N + 1)C̃2,0 = 0,

xj−1(N − 1)A0,j−1 + xj(N − 1)A1,j + xj−1(N)
(
B̂0,j−1 ⊗ In

)
+xj(N)

[
B̃j + (B̂1,j ⊗ In)

]
+ xj+1(N)

(
B̂2,j+1 ⊗ In

)
+ xj(N + 1)C̃2,j = 0, 1 ≤ j ≤ c− 1,

xc−1(N − 1)A0,c−1 + xc(N − 1)A1,c + xc−1(N)
(
B̂0,c−1 ⊗ In

)
+xc(N)

[
B̃c + (B̂1,c ⊗ In)

]
= 0.

(26)
For rN + 1 ≤ i ≤ (r + 1)N − 1, 1 ≤ r ≤ K − 1,

x0(i− 1)A1,0 + x0(i)
[
B̃0 + (B̂1,0 ⊗ In)

]
+ x1(i)

(
B̂2,1 ⊗ In

)
+ x0(i+ 1)C̃r+1,0 = 0,

xj−1(i− 1)A0,j−1 + xj(i− 1)A1,j + xj−1(i)
(
B̂0,j−1 ⊗ In

)
+ xj(i)

[
B̃j + (B̂1,j ⊗ In)

]
+xj+1(i)

(
B̂2,j+1 ⊗ In

)
+ xj(i+ 1)C̃r+1,j = 0, 1 ≤ j ≤ c− 1,

xc−1(i− 1)A0,c−1 + xc(i− 1)A1,c + xc−1(i)
(
B̂0,c−1 ⊗ In

)
+xc(i)

[
B̃c + (B̂1,c ⊗ In)

]
= 0.

(27)
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For i = rN, 2 ≤ r ≤ K − 1,

x0(i− 1)A1,0 + x0(i)
[
B̃0 + (B̂1,0 ⊗ In)

]
+ x1(i)

(
B̂2,1 ⊗ In

)
+ x0(i+ 1)C̃r+1,0 = 0,

xj−1(i− 1)A0,j−1 + xj(i− 1)A1,j + xj−1(i)
(
B̂0,j−1 ⊗ In

)
+ xj(i)

[
B̃j + (B̂1,j ⊗ In)

]
+xj+1(i)

(
B̂2,j+1 ⊗ In

)
+ xj(i+ 1)C̃r+1,j = 0, 1 ≤ j ≤ c− 1,

xc−1(i− 1)A0,c−1 + xc(i− 1)A1,c + xc−1(i)
(
B̂0,c−1 ⊗ In

)
+xc(i)

[
B̃c + (B̂1,c ⊗ In)

]
= 0.

(28)

For i = KN,

x0(KN − 1)A1,0 + x0(KN)
[
B̃0 + (B̂1,0 ⊗ In)

]
+ x1(KN)

(
B̂2,1 ⊗ In

)
+x0(KN + 1)C0 = 0,

xj−1(KN − 1)A0,j−1 + xj(KN − 1)A1,j + xj−1(KN)
(
B̂0,j−1 ⊗ In

)
+ xj(KN)

[
B̃j

+(B̂1,j ⊗ In)
]
+ xj+1(KN)

(
B̂2,j+1 ⊗ In

)
+ xj(KN + 1)Cj = 0, 1 ≤ j ≤ c− 1,

xc−1(KN − 1)A0,c−1 + xc(KN − 1)A1,c + xc−1(KN)
(
B̂0,c−1 ⊗ In

)
+xc(KN)

[
B̃c + (B̂1,c ⊗ In)

]
= 0.

(29)

For i ≥ KN + 1,

x0(i− 1)A1,0 + x0(i)
[
B̂0 + (B̂1,0 ⊗ In)

]
+ x1(i)

(
B̂2,1 ⊗ In

)
+ x0(i+ 1)C0 = 0,

xj−1(i− 1)A0,j−1 + xj(i− 1)A1,j + xj−1(i)
(
B̂0,j−1 ⊗ In

)
+ xj(i)

[
B̂j + (B̂1,j ⊗ In)

]
+xj+1(i)

(
B̂2,j+1 ⊗ In

)
+ xj(i+ 1)Cj = 0, 1 ≤ j ≤ c− 1,

xc−1(i− 1)A0,c−1 + xc(i− 1)A1,c + xc−1(i)
(
B̂0,c−1 ⊗ In

)
++xc(i)

[
B̂c + (B̂1,c ⊗ In)

]
= 0.

(30)
Post-multiplying the first three equations in (24) by e and adding the resulting
equations, we get

−αp
∑c−1

i=0 (c− i)xi(0)ec+1−i(c+ 1− i)− λ
∑c

i=0 xi(0)ec+1−i(c+ 1− i)

+θ1
∑c−1

i=0 xi(1)
((

e− ec+1−i(c+ 1− i)
)
⊗ S0

)
= 0.

(31)
Post-multiplying the other equations in (24) and all equations in (25)−(30) by
(e⊗ I) and adding the resulting equations, we get

αp
∑c−1

i=0 (c− i)xi(0)ec+1−i(c+ 1− i)⊗ β + λ
∑c

i=0 xi(0)ec+1−i(c+ 1− i)⊗ β

−
[
θ1
∑c−1

i=0 xi(1)
((
(e⊗ S) + ec+1−i(c+ 1− i)

)
⊗ S0β

)]
(e⊗ I)

+
[∑K

j=1 θj
∑jN

i=(j−1)N+1

∑c
k=0 xk(i)ec+1−k

+θ
∑∞

i=KN+1

∑c
k=0 xk(i)ec+1−k

]
(e⊗ I) = 0.

(32)
Post-multiplying equation (31) by β and adding the equation in (32), we get[∑K

j=1 θj
∑jN

i=(j−1)N+1

∑c
k=0 xk(i)ec+1−k

+θ
∑∞

i=KN+1

∑c
k=0 xk(i)ec+1−k

]
(e⊗ (S + S0β)) = 0,

(33)

from which using the uniqueness of the stationary vector of the generator (S +
S0β) the stated result follows. �
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4. System performance and reliability measures

The system measures are used to bring out the qualitative behavior of the
queueing model under study, and hence we display a few for our model here.

(1) Pidle: This is the probability that the system is idle (i.e., all servers are
idle or/and failed and the retrial orbit is empty) at an arbitrary time:
Pidle =

c∑
j=0

x0j (0).

(2) PO−empty: This is the probability that the retrial orbit is empty at an
arbitrary time: PO−empty = x(0)e.

(3) PSMr: This is the probability that the system is in mode r, 0 ≤ r ≤
K +1. Note that the system is said to be in (i) mode 0 when the retrial
orbit is empty; (ii) in mode i, 1 ≤ i ≤ K, when the rate of retrials is θi;
and (iii) in mode K+1 when the rate of retrials is given by θ.

PSMr =


x(0)e, r = 0,

N∑
i=1

x
(
(r − 1)N + i

)
e, 1 ≤ r ≤ K,

x(KN)R(I −R)−1e, r = K + 1

(4) PMFb: The probability mass function of the number of busy servers is
given by {ỹi, 0 ≤ i ≤ c}, where

ỹi =
c−i∑
k=0

xi
k(0) +

∞∑
j=1

c−i∑
k=0

xi
k(j)e, 0 ≤ i ≤ c− 1,

ỹc = xc
0(0) +

∞∑
j=1

xc
0(j)e.

From this probability mass function, we can obtain the mean, µb, number
of busy servers and the standard deviation, σb, of the number of busy
servers.

(5) PMFf : The probability mass function of the number of failed servers is
given by {z̃i, 0 ≤ i ≤ c}, where

z̃i =
c−i∑
k=0

xk
i (0) +

∞∑
j=1

c−i∑
k=0

xk
i (j)e, 0 ≤ i ≤ c− 1,

z̃c = x0
c(0) +

∞∑
j=1

x0
c(j)e.

Again, from this probability mass function, we can obtain the mean, µf ,
number of failed servers and the standard deviation, σf , of the number
of failed servers.

(6) Pblock: This is the probability of blocking when an arriving customer
finds all servers busy or/and failed and is calculated as

Pblock =

c∑
k=0

xc−k
k (0) +

∞∑
j=1

c∑
k=0

xc−k
k (j)e.

(7) Pft: This refers to the probability of termination of an ongoing service
due to a server breakdown, when no other server is available and the
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interrupted service leaves the system with probability (1 − p). It is
calculated as

Pft = α(1− p)

[
c∑

i=1

i xi
c−i(0) +

∞∑
j=1

c∑
i=1

i xi
c−i(j)e

]
.

(8) ξr, 1 ≤ r ≤ K + 1: This refers to the rate of a successful capture of an
idle server by an orbiting customer when the system is in mode r, and
is calculated as

ξr =


θr

N∑
j=1

c−1∑
k=0

c−k−1∑
i=0

xi
k((r − 1)N + j)S0, 1 ≤ r ≤ K,

θ
∞∑
j=1

c−1∑
k=0

c−k−1∑
i=0

xi
k(KN + j)S0, r = K + 1.

(9) µRO: Mean number of customers in retrial orbit

µRO =

KN−1∑
i=1

i x(i)e+ x(KN)
[
KN (I −R)−1 +R(I −R)−2]e.

5. Illustrative numerical examples

In this section, to understand and to bring out the qualitative aspects of the
threshold queueing model under study, we look at a few illustrative numerical
examples. We analyze different scenarios by varying the parameters of the model
including the retrial time distributions. We consider four special types of phase-
type distributions for the retrial times.

ERLANG (E): This is an Erlang distribution of order 5.
EXPON (X): This is an exponential distribution.
PH-MIX (M): This is a mixture of Erlang of order 2 (with probability 0.5) and
a hyperexponential with mixing probabilities (0.45, 0.05) with rates (1.9, 0.19).
HYPEXP (H): This is a hyperexponential distribution with mixing probabilities
(0.6, 0.2, 0.15, 0.05) with rates (100, 10, 1, 0.1).

While we will normalize these four distributions so as to keep the means to
be the same, they have a different variance structure. The ratios of the standard
deviations for E, X, M and H are 0.44721, 1, 1.66415 and 4.64204, respectively.

Since the main focus of this paper is the introduction of the failures and re-
pairs of the server, we will discuss the impact of the failure rates on the key
measures. Towards this end, we compare the model presented here against the
one in [4]. Hence, we look at the ratio of the measures for α > 0 over the corre-
sponding one for α = 0.

Example 1: In this example, we discuss the behaviour of the measures, Pblock

and µRO. Towards this end, we fix K = 40, N = 5, λ = 1, δ = 1, θk = 0.1k, 1 ≤
k ≤ 40, θ = 4.1, and vary c, ρ, α and p. In order to compare the measures
properly (as the stability condition depends on various parameters including the
type of retrial distribution), we first identified that value of µ for which the



188 Chakravarthy, Ozkar and Shruti

traffic intensity is close (up to three decimal places) to the given value. That
is, given a value for ρ, we find the minimum value for µ which ρ ≈ πAe

πCe . By
considering the four distributions listed above for the retrials, we display the
ratio of the measure Pblock for α > 0 over Pblock for α = 0 in Figure 3 and a
similar ratio for the µRO in Figure 4. It should be pointed out the each cluster
(that is, the set of 11 points in the form of dots) corresponds to varying α as
α = 0, 0.01, 0.02, ..., 0.09, 0.1. To avoid cluttering the x-axis with too many vari-
ables, we did not display α but it should be clear from the “dots” that α values
are used in the graphs. Also, we did not plot the graphs for exponential retrials
as the graphs are similar to Erlang ones, and also to not clutter with too many
graphs in one Figure. From these figures, we notice the following observations.

• With regard to the ratio on Pblock:
(1) As is to be expected, the ratio shows a non-increasing pattern (as

α is increased) when p > 0 under all scenarios. However, the rate
of decrease depends on the values of c and the type of retrial dis-
tributions.

(2) In the multi-server case, we see an interesting trend. For p = 0, this
ratio appears to increase as α increases. However, for the other two
values of p considered here, the ratio decreases (but with a higher
rate for p = 1 as compared to p = 0.5) as α is increased. This may
look counter intuitive but this phenomenon can be explained as
follows. A high failure rate will result in removing customers from
the system and thus results in less blocking for future customers.

(3) The effect of p is seen when moving from ρ = 0.5 to ρ = 0.95,
especially, for retrial distribution having a large variability. It is
more pronounced when c is increased.

• With regard to the ratio on µRO:
(1) For all practical purposes, we do not see a significant difference

in this ratio for the single server cases under all scenarios. While
we do see some changes in this ratio as a function of α for some
scenarios when c = 2 and p = 0, it is only when c > 2, we tend
to see significant effect of α as well as p. This could be due to a
variety of reasons including the change in the service rate (due to
the requirement that ρ is fixed across all scenarios).

(2) We also notice that when the traffic intensity is high, this ratio
appears to be the same as the model considered in [4] when p = 1.
This indicates that letting customers leave the system whenever the
servers are interrupted is somehow off-set by the failure of the server
to account for a similar mean number of customers in the orbit.

(3) The impact of high variability in the retrial distribution is clearly
seen in the ratio in the case of multi-server systems. Specifically,
we notice that the ratio decreases as the variability in the retrial
times increases.
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Figure 3. Ratios of Pblock under various scenarios.
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Figure 4. Ratios of µRO under various scenarios.
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Example 2: The purpose of this example is to investigate the effect of α, ρ, p,
c and the type of retrial distribution on the minimum value of θ needed so that
the traffic intensity will be equal to the given value of ρ. Note that ρ does not
depend on θk, 1 ≤ k ≤ K. We look at the ratio of ln(θ) for α = 0.01, 0.05 over
ln(θ) for α = 0. We fix K = 70, λ = 1, δ = 1, µ = 1

cρ , and vary c, ρ, α and p.
That is, we are comparing the behavior of the retrial rates for our current model
as compared to the corresponding model without failures.

A quick look at Table 1 reveals that for all the four retrial times and for
p = 0, 0.5, 1, the retrial rate appears to be insensitive to the value of α, for
low traffic intensity (see, e.g., ρ = 0.5) when c = 1. On the other hand, for
higher values of the traffic intensity (see, e.g., ρ = 0.95), the retrial rate shows
more sensitivity to α as well as on c. The level of sensitivity depends on the
value of c and the type of retrial distribution. This is not surprising since for
lower traffic intensity values, the system is idle for longer periods of time, and
so there is no reason to require a higher retrial rate to capture a free server.

TABLE 1. The ratio, Ln(θ)α>0/Ln(θ)α=0, under various scenarios*
Ln(θ)α=0.01/Ln(θ)α=0 Ln(θ)α=0.05/Ln(θ)α=0

p ρ c E X M H E X M H
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.5 2 1.03 1.03 1.02 1.02 1.21 1.17 1.10 1.09
0 5 -0.24 -0.20 -0.18 0.04 -0.22 -0.18 -0.16 0.05

1 1.10 1.09 1.09 1.07 0.69 0.71 0.73 0.78
0.95 2 0.61 0.64 0.67 0.74 0.37 0.41 0.44 0.57

5 0.28 0.33 0.36 0.52 0.05 0.09 0.11 0.32
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.5 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 5 -0.26 -0.21 -0.19 0.03 -0.22 -0.18 -0.16 0.07

1 0.76 0.77 0.79 0.83 0.90 0.91 0.92 0.93
0.95 2 1.48 1.44 1.40 1.32 0.56 0.59 0.62 0.70

5 0.48 0.52 0.56 0.67 0.25 0.29 0.32 0.49
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.5 2 0.93 0.97 0.98 0.98 0.81 0.85 0.91 0.92
1 5 -0.27 -0.23 -0.20 0.01 -0.28 -0.24 -0.22 -0.01

1 1.42 1.39 1.36 1.29 0.75 0.77 0.79 0.83
0.95 2 0.62 0.65 0.68 0.75 0.83 0.84 0.85 0.88

5 0.26 0.31 0.35 0.51 0.31 0.36 0.39 0.54
∗E = ERLANG,X = EXPON,M = PH − MIX, and H = HY PEXP

Example 3: In this example, we look at the two measures, ξr, 1 ≤ r ≤ K + 1
and PSMr, 0 ≤ r ≤ K + 1. We identify the values of K,N , and r for which
the customer has the largest probability of capturing a free server (ξ∗) and for
which the probability that the system operates in mode r is highest among K+1
modes (PSM∗). That is, we look for (K∗

2 , r
∗
2 , N

∗
2 , ξ

∗) and (K∗
1 , r

∗
1 , N

∗
1 , PSM

∗).
We fix λ = 1, δ = 1, θ1 = 0.5, θ = 5.0, and obtain µ so that ρ equals to the
specific value considered. By looking at N = 1, 2, 5 and varying K from 1 to 40,
the optimal values are displayed in Tables 2 and 3, respectively, under various
scenarios.
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TABLE 2. (K∗
2 , r

∗
2 , N

∗
2 , ξ

∗) under various scenarios
α ρ p ToR c = 1 c = 2 c = 5

ERLANG (5, 2, 5, 0.211) (4, 1, 5, 0.212) (3, 1, 5, 0.109)
0 PH-MIX (6, 2, 5, 0.172) (5, 1, 5, 0.193) (4, 1, 5, 0.112)

HYPEXP (8, 2, 5, 0.075) (7, 1, 5, 0.092) (6, 1, 5, 0.088)
ERLANG (5, 2, 5, 0.211) (4, 1, 5, 0.213) (3, 1, 5, 0.106)

0.5 0.5 PH-MIX (6, 2, 5, 0.172) (5, 1, 5, 0.193) (4, 1, 5, 0.109)
HYPEXP (8, 2, 5, 0.075) (7, 1, 5, 0.093) (6, 1, 5, 0.088)
ERLANG (5, 1, 5, 0.549) (4, 1, 5, 0.564) (3, 1, 5, 0.103)

1 PH-MIX (6, 2, 5, 0.172) (5, 1, 5, 0.528) (4, 1, 5, 0.107)
HYPEXP (8, 2, 5, 0.075) (7, 1, 5, 0.093) (6, 1, 5, 0.088)

0.01 ERLANG (27, 7, 5, 0.115) (32, 6, 5, 0.099) (35, 4, 5, 0.089)
0 PH-MIX (25, 8, 5, 0.106) (28, 7, 5, 0.090) (33, 5, 5, 0.078)

HYPEXP (20, 9, 5, 0.073) (22, 8, 5, 0.063) (27, 8, 5, 0.052)
ERLANG (27, 7, 5, 0.115) (32, 6, 5, 0.101) (40, 4, 5, 0.088)

0.95 0.5 PH-MIX (25, 8, 5, 0.106) (28, 7, 5, 0.091) (34, 5, 5, 0.078)
HYPEXP (20, 9, 5, 0.073) (23, 8, 5, 0.063) (27, 7, 5, 0.052)
ERLANG (27, 7, 5, 0.116) (32, 6, 5, 0.101) (40, 4, 5, 0.091)

1 PH-MIX (25, 8, 5, 0.107) (28, 7, 5, 0.091) (34, 5, 5, 0.080)
HYPEXP (20, 9, 5, 0.073) (22, 8, 5, 0.064) (27, 7, 5, 0.053)
ERLANG (5, 2, 5, 0.211) (4, 1, 5, 0.213) (4, 1, 5, 0.130)

0 PH-MIX (6, 2, 5, 0.171) (5, 1, 5, 0.194) (4, 1, 5, 0.129)
HYPEXP (8, 2, 5, 0.075) (7, 1, 5, 0.092) (6, 1, 5, 0.093)
ERLANG (5, 2, 5, 0.211) (4, 1, 5, 0.215) (3, 1, 5, 0.115)

0.5 0.5 PH-MIX (6, 2, 5, 0.172) (5, 1, 5, 0.195) (4, 1, 5, 0.118)
HYPEXP (8, 2, 5, 0.075) (7, 1, 5, 0.094) (6, 1, 5, 0.093)
ERLANG (5, 2, 5, 0.213) (4, 1, 5, 0.216) (3, 1, 5, 0.102)

1 PH-MIX (6, 2, 5, 0.173) (5, 1, 5, 0.197) (3, 1, 5, 0.107)
HYPEXP (8, 2, 5, 0.075) (7, 1, 5, 0.096) (5, 1, 5, 0.092)

0.05 ERLANG (27, 7, 5, 0.115) (31, 6, 5, 0.101) (18, 3, 5, 0.138)
0 PH-MIX (25, 8, 5, 0.106) (28, 7, 5, 0.092) (22, 4, 5, 0.103)

HYPEXP (20, 9, 5, 0.072) (22, 8, 5, 0.064) (26, 8, 5, 0.056)
ERLANG (27, 7, 5, 0.117) (31, 6, 5, 0.105) (33, 5, 5, 0.103)

0.95 0.5 PH-MIX (25, 8, 5, 0.107) (28, 7, 5, 0.095) (30, 5, 5, 0.090)
HYPEXP (20, 9, 5, 0.073) (22, 8, 5, 0.065) (26, 8, 5, 0.058)
ERLANG (28, 7, 5, 0.119) (31, 6, 5, 0.109) (33, 4, 5, 0.110)

1 PH-MIX (25, 8, 5, 0.109) (28, 7, 5, 0.098) (32, 5, 5, 0.093)
HYPEXP (20, 9, 5, 0.073) (22, 8, 5, 0.066) (27, 8, 5, 0.059)

A look at the tables reveal the following observations:
• With respect to the probability of capturing a free server, we notice that
for all combinations except ρ = 0.5, c = 5, ERLANG retrials have the
largest probability for a customer to capture a server.

• As p is increased (for fixed ToR), except for c = 5 the rate of increase
in the values of ξ∗ appears to be less significant under all scenarios.
However, when c = 5 there is a significant difference in the ξ∗ values for
all (but for HYPEXP retrials), showing that when ρ = 0.95, an increase
in p leads to a significant increase in ξ∗ whereas we see a marked drop
when ρ = 0.5.

• As α increases (by fixing all other parameters) we observe a steep in-
crease in ξ∗ for all the four retrial times when c = 5.

• The measure, PSM , interestingly indicates that when ρ = 0.5, for HY-
PEXP retrials the system operates most of the times in the mode when
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there is no one in the retrial orbit, under all the three values of c consid-
ered. However, for the other three retrial times, we notice such behavior
notably for c = 5.

TABLE 3. (K∗
1 , r

∗
1 , N

∗
1 , PSM∗) under various scenarios

α ρ p ToR c = 1 c = 2 c = 5

ERLANG (5, 1, 5, 0.550) (4, 1, 5, 0.566) (15, 0, 1, 0.778)
0 PH-MIX (6, 1, 5, 0.492) (5, 1, 5, 0.530) (16, 0, 1, 0.750)

HYPEXP (19, 0, 1, 0.325) (19, 0, 1, 0.424) (20, 0, 1, 0.601)
ERLANG (5, 1, 5, 0.550) (4, 1, 5, 0.565) (15, 0, 1, 0.787)

0.5 0.5 PH-MIX (6, 1, 5, 0.492) (5, 1, 5, 0.529) (16, 0, 1, 0.760)
HYPEXP (19, 0, 1, 0.325) (19, 0, 1, 0.425) (20, 0, 1, 0.609)
ERLANG (5, 1, 5, 0.549) (4, 1, 5, 0.564) (15, 0, 1, 0.795)

1 PH-MIX (6, 1, 6, 0.491) (5, 1, 5, 0.528) (16, 0, 1, 0.767)
HYPEXP (19, 0, 1, 0.325) (19, 0, 1, 0.427) (20, 0, 1, 0.614)

0.01 ERLANG (27, 7, 5, 0.136) (32, 5, 5, 0.122) (40, 3, 5, 0.123)
0 PH-MIX (24, 7, 5, 0.141) (28, 6, 5, 0.124) (33, 4, 5, 0.115)

HYPEXP (20, 9, 5, 0.159) (23, 8, 5, 0.141) (27, 7, 5, 0.117)
ERLANG (27, 7, 5, 0.136) (31, 5, 5, 0.124) (40, 4, 5, 0.119)

0.95 0.5 PH-MIX (25, 7, 5, 0.140) (28, 6, 5, 0.123) (34, 4, 5, 0.112)
HYPEXP (20, 9, 5, 0.159) (23, 8, 5, 0.141) (27, 7, 5, 0.117)
ERLANG (27, 7, 5, 0.136) (32, 5, 5, 0.124) (40, 3, 5, 0.122)

1 PH-MIX (25, 7, 5, 0.140) (28, 6, 5, 0.124) (34, 4, 5, 0.116)
HYPEXP (20, 9, 5, 0.159) (23, 8, 5, 0.141) (28, 7, 5, 0.117)
ERLANG (5, 1, 5, 0.547) (4, 1, 5, 0.573) (15, 0, 1, 0.733)

0 PH-MIX (6, 1, 5, 0.489) (5, 1, 5, 0.533) (16, 0, 1, 0.710)
HYPEXP (20, 0, 1, 0.326) (19, 0, 1, 0.419) (20, 0, 1, 0.572)
ERLANG (5, 1, 5, 0.546) (4, 1, 5, 0.568) (14, 0, 1, 0.774)

0.5 0.5 PH-MIX (6, 1, 5, 0.488) (5, 1, 5, 0.530) (15, 0, 1, 0.749)
HYPEXP (20, 0, 1, 0.327) (19, 0, 1, 0.426) (19, 0, 1, 0.606)
ERLANG (5, 1, 5, 0.544) (4, 1, 5, 0.563) (13, 0, 1, 0.807)

1 PH-MIX (6, 1, 5, 0.487) (5, 1, 5, 0.526) (15, 0, 1, 0.782)
HYPEXP (21, 0, 1, 0.329) (19, 0, 1, 0.432) (19, 0, 1, 0.635)

0.05 ERLANG (27, 7, 5, 0.136) (31, 6, 5, 0.124) (17, 2, 5, 0.227)
0 PH-MIX (25, 7, 5, 0.140) (28, 6, 5, 0.125) (22, 3, 5, 0.165)

HYPEXP (20, 9, 5, 0.158) (22, 8, 5, 0.142) (26, 7, 5, 0.122)
ERLANG (27, 7, 5, 0.136) (31, 5, 5, 0.126) (32, 4, 5, 0.128)

0.95 0.5 PH-MIX (25, 7, 5, 0.139) (28, 6, 5, 0.125) (30, 5, 5, 0.121)
HYPEXP (21, 9, 5, 0.157) (23, 8, 5, 0.141) (26, 7, 5, 0.120)
ERLANG (27, 7, 5, 0.135) (31, 5, 5, 0.126) (32, 3, 5, 0.134)

1 PH-MIX (25, 7, 5, 0.139) (28, 6, 5, 0.126) (31, 4, 5, 0.121)
HYPEXP (21, 9, 5, 0.156) (23, 8, 5, 0.141) (27, 7, 5, 0.119)

6. Concluding remarks

In this paper, we studied a multi-server retrial queue in which servers are
subject to breakdowns and repairs. The retrial attempts are modeled using a
recently introduced threshold-based phase type distributions. Upon a server
failure, the customer whose service gets interrupted will be handed over to an-
other available server, if any, in order to complete its ongoing service; otherwise,
the customer may choose to join the retrial orbit or depart from the system ac-
cording to a Bernoulli trial. Using the matrix-analytic method, the steady state
analysis of the model including a few illustrative examples are presented.
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The model considered in this paper can be studied further in a number of
ways. Some specific ones are as follows. First, one can generalize this to include
MAP arrivals and/or phase-type services. Secondly, it would be interesting to
study the present model using simulation. Thirdly, we can look at the case of
having a common repair facility with one or more repairmen to tend to failed
servers.
Acknowledgments The authors are grateful to the anonymous referees whose
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