• Title/Summary/Keyword: Response to climate changes

Search Result 180, Processing Time 0.025 seconds

Altitudinal diversity and distribution of butterflies inhabiting Mt. Jirisan, South Korea (지리산 나비의 고도에 따른 다양성과 서식 분포)

  • Lee, Sanghun;Ahn, Nahyun;An, Jeong-Seop
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.497-506
    • /
    • 2020
  • This study surveyed the altitudinal diversity and distribution of butterflies inhabiting Mt. Jirisan. Field surveys were conducted thrice (May, June, and July) using a line transect method along four routes in 2015. During the survey, a total of five families, 58 species, and 769 individuals were collected. Of the species collected, the majority belonged to the family Nymphalidae (28 species), followed by Hesperiidae (nine species), Pieridae (eight species), Lycaenidae (seven species), and Papilionidae (six species). As for the individuals, Pieridae accounted for the largest number (333 individuals), followed by Nymphalidae (309 individuals), Lycaenidae (63 individuals), Hesperiidae (33 individuals), and Papilionidae (31 individuals). A cluster analysis performed on the butterfly species distinguished three altitude zones. The butterflies showed different ecological traits in each of the altitude zones. Analysis of the altitudes of the habitats of eight dominant species revealed that each species inhabited a particular altitude. This study confirmed the hypothesis that continuous monitoring will identify changes in the altitudinal distribution and diversity of butterflies on Mt. Jirisan in response to climate change.

Physiological Characteristics and Yield of Onion Affected by Rapid Temperature Changes (급변온도 변이에 따른 양파의 생리적 특성 및 수량 변화)

  • Lee, Hyeong-Jin;Han, Hyo-Shim;Chon, Sang-Uk;Kim, Dong-Kwan;Kwon, Hyun Sook;Lee, Kyung Dong
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.364-371
    • /
    • 2014
  • BACKGROUND: To evaluate the impact of rapid temperature change at spring and the early summer seasons in climate change, we have investigated the physiological response and yield of onion in a greenhouse with thermostat control system. METHODS AND RESULTS: Seedlings of onion(cv. Sunshine) were planted on October 30, 2012 and harvested on May 30, 2013. The used treatments(March-April-May) for a rapid temperature change were T0(control): $6.0-10.4-17.2^{\circ}C$, T1: $6.0-5.4(-5)-17.2^{\circ}C$, T2: $6.0-10.4-22.2(+5)^{\circ}C$ and T3: $6.0-5.4(-5)-22.2(+5)^{\circ}C$. Total yields of bulb within the temperature change as high temperature treatment T2 and control treatment T0 were increased significantly(p<0.05), as compared to the low temperature treatment T1. Low temperature conditions significantly (p<0.05) reduced plant height, SPAD reading, crude protein and fiber etc., as compared to the TO and T2. CONCLUSION: The rapid temperature changes were highly affected by low temperature than high temperature. These results suggest that rapid climate change of future could need systematic standard model for physiological characteristics and yields of onion.

A study on the atmospheric response to a SST anomaly over the Equatorial Eastern Pacific Ocean with the horizontally fine resolution AGCM (수평조밀격자 GCM을 이용한 적도 태평양상의 SST anomaly에 대한 대기 반응 연구)

  • Moon, Sung-Eui;Ahn, Joong-Bae;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.403-411
    • /
    • 1995
  • The atmospheric responses to a Sea Surface Temperature Anomaly(SSTA) over the equatorial eastern Pacific Ocean have been investigated using the horizontally fine resolution model based on OSU 2-layer Atmospheric General Circulation Model(AGCM). The SSTAS daring the peak phase of 1982-83 El Nino have been applied to the model as the boundary conditions of the experiment. The model simulates the eastward movement of the rising branch of the Walker circulation. That is, the major features associated with the El Nino such as the increase of the precipitation rate over the center of the Pacific and decrease over the Indonesia, and the 500hPa geopotential height anomaly in the middle latitude are properly describes in the fine resolution model experiment. The model results indicate that this horizontally fine resolution UM can successfully simulate the ENSO anomalies and be more effectivelly used for the study of the climate and the climate changes.

  • PDF

Future hydrological changes in Jeju Island based on CMIP6 climate change scenarios (CMIP6 기후변화 시나리오에 따른 제주도 지역의 미래 수문변화 전망)

  • Kim, Chul-Gyum;Cho, Jaepil;Lee, Jeong Eun;Chang, Sunwoo
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.737-749
    • /
    • 2023
  • In this study, we analyzed the hydrological impacts of future climate change on Jeju Island using SSP-based climate change scenarios from 18 climate models and watershed modeling (SWAT-K). Despite discrepancies among climate models, we generally observed an increase in evapotranspiration due to rising future temperatures. Furthermore, a significant increase in runoff and recharge was noted due to increased precipitation. These increasing trends were particularly pronounced in the SSP5-8.5 scenario, and differences among GCM models became more significant in the late 21 century. When compared to the historical period (1981-2010), the projected changes for the far-future period (2071-2100) in the SSP5-8.5 scenario showed a 21.4% increase in precipitation, a 19.2% increase in evapotranspiration, a 40.9% increase in runoff, and a 16.6% increase in recharge on an annual average basis. On a monthly basis in the SSP5-8.5 scenario, precipitation was expected to increase by 24.5% in September, evapotranspiration by 34.1% in April, runoff by 58.1% in October, and recharge by 33.8% in September. To further assess projections based on extreme climate scenarios, we selected two models, CanESM5 and ACCESS-ESM1-5, which represented the maximum and minimum future precipitation forecasts, and compared the hydrological changes in the future scenarios. The results indicated that runoff and recharge rates were relatively higher in the CanESM5 model with the highest precipitation forecast, while evapotranspiration rates were higher in the ACCESS-ESM1-5 model with the lowest precipitation forecast. Based on the climate change scenarios used in this study, the overall available water resources on Jeju Island are more likely to increase. However, since results vary by season and region depending on the climate model and scenario, it is considered necessary to conduct a comprehensive analysis and develop response measures using various scenarios.

Variations in Ecological Niche of Quercus variabilis and Quercus acutissima Leaf Morphological Characters in Response to Moisture and Nutrient Gradient Treatments under Climate Change Conditions (기후변화 조건에서 수분구배 및 영양소 구배에 따른 굴참나무와 상수리나무 잎 형태적 특성의 생태지위 변화)

  • Park, Yeo-Bin;Kim, Eui-Joo;Park, Jae-Hoon;Kim, Yoon-Seo;Park, Ji-Won;Lee, Jung-Min;You, Young-Han
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.2
    • /
    • pp.43-53
    • /
    • 2024
  • This study attempted to elucidate the ecological niches and influencing environmental factors of Quercus variabilis and Quercus acutissima, which are representative deciduous broad-leaved trees in Korean forests, taxonomically close and genetically similar, under climate change conditions. Under climate change conditions induced by increased CO2 and temperature, soil moisture and nutrient environments were manipulated in four gradients. At the end of the growing, plants were harvested to measure growth responses, calculate ecological niches, and compare them with those of the control. Eperimental plants were grown for 180 days in a glass greenhouse designed with four gradients each for soil moisture and nutrient environments under climate change conditions induced by increased CO2 and temperature. After harvesting, growth responses of leaf traits were measured, ecological niches were calculated, and these were compared with those of the control groups. Furthermore, the responses of the two species' populations were interpreted using principal component analysis(PCA) based on leaf trait measurements. As a result, under climate change conditions, the ecological niche breadth for moisture environment was broader for Quercus variabilis than Quercus acutissima, whereas for the nutrient environment, Quercus acutissima exhibited a broader niche breadth than Quercus variabilis. And the rate of change in ecological niche breadth due to climate change decreased for Quercus variabilis in both moisture and nutrient environments, while for Quercus acutissima, it increased in the moisture environment but decreased in the nutrient environment. Additionally, in terms of group responses, both Quercus variabilis and Quercus acutissima expanded their ecological niches under climate change conditions in both soil moisture and nutrient conditions, with Quercus acutissima exhibiting a broader niche than Quercus variabilis under nutrient conditions. These results indicate that the changes in leaf morphological characteristics and the responses of individuals reflecting them vary not only under climate change conditions but also depending on environmental factors.

'Green Growth' and the Possible Contribution of Geomorphologic Studies ('녹색성장'과 지형학적 연구의 기여)

  • Kim, Jong-Yeon
    • Journal of the Korean Geographical Society
    • /
    • v.45 no.1
    • /
    • pp.75-94
    • /
    • 2010
  • 'Green growth' is the development strategy for the sustainable society through the harmony between the environment and economy. The 'green growth' was defined and accepted by UNESCAP and countries in Asia-Pacific region. OECD also accepted it as their new development policy. 'Green New Deal' was also proposed as a new social/economic policy to response three global crisis: environmental, resources and economic. Social and environmental sustainability are the most important principles of this policy. In Korea, however, the 'green growth' is redefined and used by the government and politicians as an economic policy to support the new technology on energy efficiency and renewable energy. In here, the definitions of green growth in the world and in Korea are analysed and compared, and new term is proposed. Green growth is the development policy to response environmental crisis (ie. climate changes) to transform the society to environmentally and socially sustainable one. The possible contribution of geomorphologic researches to green growth was also proposed.

Effect of Experimental Warming on Physiological and Growth Responses of Larix kaempferi Seedlings (실외 온난화 처리에 따른 낙엽송 묘목의 생리 및 생장 반응)

  • An, Jiae;Chang, Hanna;Park, Min Ji;Han, Seung Hyun;Hwang, Jaehong;Cho, Min Seok;Son, Yowhan
    • Journal of Climate Change Research
    • /
    • v.7 no.1
    • /
    • pp.77-84
    • /
    • 2016
  • Seedling stage is particularly important for tree survival and is easily influenced by warming. Therefore, air temperature being increased due to climate change may affect physiological traits and growth of seedlings. This study was conducted to investigate the physiological and growth responses of Larix kaempferi seedlings to open-field experimental warming. 1-year-old and 2-year-old L. kaempferi seedlings were warmed with infrared lamps since April 2015 and April 2014, respectively. The seedlings in the warmed plots were warmed to maintain the air temperature to be $3^{\circ}C$ higher than that of the control plots. Physiological responses (stomatal conductance, transpiration rate, net photosynthetic rate and total chlorophyll content) and growth responses (root collar diameter (RCD), height and biomass) to experimental warming were measured. Physiological and growth responses varied with the seedling ages. For 2-year-old L. kaempferi seedlings, stomatal conductance, transpiration rate and net photosynthetic rate decreased following the warming treatment, whereas there were no changes for 1-year-old L. kaempferi seedlings. Meanwhile, total chlorophyll content was higher in warmed plots regardless of the seedling ages. Net photosynthetic rate linked with stomatal conductance also decreased due to the drought stress and decrease of photosynthetic efficiency. In response to warming, RCD, height and biomass did not show significant differences between the treatments. It seems that the growth responses were not affected as much as physiological responses were, since the physiological responses were not consistent, nor the warming treatment period was enough to have significant results. In addition, multifactorial experiments considering the impact of decreased soil moisture resulting from elevated temperatures is needed to explicate the impacts of a wide range of possible climate change scenarios.

Importance of Polar Phytoplankton for the Global Environmental Change (전 지구 환경변화에 대한 극지 식물플랑크톤의 중요성)

  • 강성호;강재신;이상훈;김동선;김동엽
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.1
    • /
    • pp.1-20
    • /
    • 2000
  • There are increasing evidences of climate change in the Antarctic and Arctic Oceans, especially elevated temperature due to the continuous burning of the fossil fuels and ultraviolet B(UV-B) flux within the ozone hole. Light-dependent, temperature-sensitive, and fast-growing organisms respond to these physical and biogeochemical changes. Polar marine phytoplankton, which are pioneer endemic species and important carbon contributors in the polar waters, are therefore highly suitable biological indicators of such changes. By virtue of light requirement, the primary producers are exposed to extreme seasonal fluctuations in temperature, photosynthetically active radiation, and UV radiation. Local environmental warming and increased UV-B radiation during ozone depletion may have profound effects on the primary producers that are primary carbon producers in the polar water. Small changes in climate temperature and solar radiation may have profound effects on the activity threshold of the polar phytoplanktion. To demonstrate biological response to the environmental changes, standardized representative natural and biological parameters are needed so that replicate samples (including controls) can be taken over extended periods of time. In this paper, we review general characteristics of polar phytoplankton, their environment, environmental changes in the polar waters, the effects on the environmental changes to the polar phytoplankton, and the importance of the polar phytoplankton to understand the global environmental changes. [Biological indicators, Global environmental change, Polar phytoplankton, UV].

  • PDF

Effect of Climate Factors on Tree-Ring Growth of Larix leptolepis Distributed in Korea (기후인자가 일본잎갈나무의 연륜생장에 미치는 영향 분석)

  • Lim, Jong Hwan;Sung, Joo Han;Chun, Jung Hwa;Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.1
    • /
    • pp.122-131
    • /
    • 2016
  • This study was conducted to analyze the effect of climatic variables on tree-ring growth of Larix leptolepis distributed in Korea by dendroclimatological method. For this, annual tree-ring growth data of Larix leptolepis collected by the $5^{th}$ National Forest Inventory were first organized to analyze yearly growth patterns of the species. To explain the relationship between tree-ring growth of Larix leptolepis and climatic variables, monthly temperature and precipitation data from 1950 to 2010 were compared with tree-ring growth data for each county. When tree-ring growth data were analyzed through cluster analysis based on similarity of climatic conditions, six clusters were identified. In addition, index chronology of Larix leptolepis for each cluster was produced through cross-dating and standardization procedures. The adequacy of index chronologies was tested using basic statistics such as mean sensitivity, auto correlation, signal to noise ratio, and expressed population signal of annual tree-ring growth. Response function analysis was finally conducted to reveal the relationship between tree-ring growth and climatic variables for each cluster. The results of this study are expected to provide valuable information necessary for estimating local growth characteristics of Larix leptolepis and for predicting changes in tree growth patterns caused by climate change.

Projected Climate Change Scenario over East Asia by a Regional Spectral Model (동아시아 지역에서의 지역 분광 모델을 이용하여 투영시킨 기후변화 시나리오)

  • Chang, Eun-Chul;Hong, Song-You
    • Journal of the Korean earth science society
    • /
    • v.32 no.7
    • /
    • pp.770-783
    • /
    • 2011
  • In this study, we performed a downscaling of an ECHAM5 simulated dataset for the current and future climate produced under the Special Report on Emission Scenarios A1B (SRES A1B) by utilizing the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM). The current climate simulation was performed for the period 1980-2000 and the future climate run for the period 2040-2070 for the COordinated Regional climate Downscaling EXperiment (CORDEX)'s East Asia domain. The RSM is properly able to reproduce the climatological fields from the evaluation of the current climate simulation. Future climatological precipitation during the summer season is increased over the tropical Oceans, the maritime-continent, and Japan. In winter, on the other hand, precipitation is increased over the tropical Indian Ocean, the maritime-continents and the Western North Pacific, and decreased over the eastern tropical Indian Ocean. For the East Asia region few significant changes are detected in the precipitation climatological field. However, summer rainfall shows increasing trend after 2050 over the region. The future climate ground temperature shows a clear increasing trend in comparison with the current climate. In response to global warming, atmospheric warming is clearly detected, which strengthens the upper level trough.