DOI QR코드

DOI QR Code

Physiological Characteristics and Yield of Onion Affected by Rapid Temperature Changes

급변온도 변이에 따른 양파의 생리적 특성 및 수량 변화

  • Received : 2014.10.15
  • Accepted : 2014.12.10
  • Published : 2014.12.31

Abstract

BACKGROUND: To evaluate the impact of rapid temperature change at spring and the early summer seasons in climate change, we have investigated the physiological response and yield of onion in a greenhouse with thermostat control system. METHODS AND RESULTS: Seedlings of onion(cv. Sunshine) were planted on October 30, 2012 and harvested on May 30, 2013. The used treatments(March-April-May) for a rapid temperature change were T0(control): $6.0-10.4-17.2^{\circ}C$, T1: $6.0-5.4(-5)-17.2^{\circ}C$, T2: $6.0-10.4-22.2(+5)^{\circ}C$ and T3: $6.0-5.4(-5)-22.2(+5)^{\circ}C$. Total yields of bulb within the temperature change as high temperature treatment T2 and control treatment T0 were increased significantly(p<0.05), as compared to the low temperature treatment T1. Low temperature conditions significantly (p<0.05) reduced plant height, SPAD reading, crude protein and fiber etc., as compared to the TO and T2. CONCLUSION: The rapid temperature changes were highly affected by low temperature than high temperature. These results suggest that rapid climate change of future could need systematic standard model for physiological characteristics and yields of onion.

양파의 인경 비대기인 3-5월에 급변 온도조건을 유도시켜 양파의 생육반응과 수량을 조사하였다. 시험품종은 중만생종인 선샤인을 2012년 9월 4일에 파종하여 10월 30일에 정식하였고 다음해 5월 30일에 수확하였다. 온도변화에 따른 처리구는 3-4-5월 평균온도(T0 대조구: $6.0-10.4-17.2^{\circ}C$, T1: $6.0-5.4(-5)-17.2^{\circ}C$, T2: $6.0-10.4-22.2(+5)^{\circ}C$, T3: $6.0-5.4(-5)-22.2(+5)^{\circ}C$)를 기준으로 4월과 5월에 ${\pm}5^{\circ}C$씩 온도차를 두었다. 그 결과, T2처리구가 T0 대조구에 비하여 양파 생육과 구의 수량이 증가하였으나 저온처리구인 T1에서는 감소하였다. 무기이온 함량에서는 3월보다는 5월에 다량원소의 감소가 있었고 고온보다 저온에서 함유량이 높았다. 호르몬의 변화는 구의 비대시기와 밀접하게 관련이 있었으며 ABA 함량의 증가는 구의 비대를 촉진하였다. 따라서 급변온도에 대한 비대기 양파의 생육과 수량은 고온보다는 저온기간이 길어질수록 수량지수가 감소됨을 확인하였다.

Keywords

References

  1. A.O.A.C., 1995. Official method of analysis of AOAC Internationnal, Method 991.43, 16th ed. Association of official analytical communities, Arlington, VA, USA.
  2. Brewster, J.L., 1990. The influence of cultural and environmental factors on the time of maturity of bulb onion crops, Aata Hort. 267, 289-296.
  3. Jackson, S.D., 1999. Multiple signaling pathways control tuber induction in potato, Plant Physiol. 119, 1-8. https://doi.org/10.1104/pp.119.1.1
  4. Jang, H.I., Seo, H.H., Park, S.J., 2002. Strategy for fuji cultivation research under the changing climate, Korean J. Hort. Sci. Technol. 20, 270-275.
  5. Jeong, H.K., Kim, C.G., Moon, D.H., 2014. An analysis of impacts of climate change on rice damage occurrence by insect pests and disease, Korean J. Environ. Agric. 33, 52-56. https://doi.org/10.5338/KJEA.2014.33.1.52
  6. Kato, T., Yamata, K., Haioka, T., Kawajaki, S., Shoma, A., 1999. Vegetable encyclopedia 11. Onion, asparagus and Japanese angelica tree, pp.121-140, 4th ed. Rural Cult. Ass. Tokyo, Japan.
  7. Kim, D.J., Kim, S.O., Moon, K.H., Yun, J.I., 2012. An outlook on cereal grains production in South Korea based on crop growth simulation under the RCP8.5 climate condition, Korean J. Agric. For. Meteorol. 14, 132-141. https://doi.org/10.5532/KJAFM.2012.14.3.132
  8. Lee, G.A., Chang, Y.K., Park, S.Y., Kim, G.A., Kim, S.H., Park, K.C., 2012. Comparative analysis on concentration and uptake amount of mineral nutrients in different growth stages and temperatures of Panax ginseng C.A.Meyer grown with hydroponic culture, Korean J. Medicinal Crop Sci. 20, 251-258. https://doi.org/10.7783/KJMCS.2012.20.4.251
  9. Lee, E.J., Suh, J.K., 2009. Pyruvic acid and sugar contents according to bulb growth stage in onion, Kor. J. Hort. Sci. Technol. 27, 18-23.
  10. Lee, T.S., Choi, J.Y., Yoo, S.H., Lee, S.H., Oh, Y.G., 2012. Analyzing consumptive use of water and yields of paddy rice by climate change, J. Korean Soc. Agric. Eng. 54, 47-54. https://doi.org/10.5389/KSAE.2012.54.1.047
  11. Park, Y.B., Lee, B.Y., 1992. Effect of storage temperature on changes in carbohydrate and endogenous hormones in garlic bulbs, J. Kor. Soc. Hort. Sci. 33, 442-451.
  12. Sakano, K., 1981. Regulation of aspartate kinase isoenzyme levels in cultured cells of Vinca rosea, Plant Cell Physiol. 22, 1343-1353.
  13. Shim, K.M., Min, S.H., Lee, D.B., Kim, G.Y., Jeong, H.C., Lee, S.B., Kang, K.K., 2011. Simulation of the effects of the A1B climate change scenario on the potential yield of winter naked barley in Korea, Korean J. Agric. For. Meteorol. 13, 192-203. https://doi.org/10.5532/KJAFM.2011.13.4.192
  14. Shin, D.B., Seog, H.M., Kim, J.H., Lee, Y.C., 1999. Flavor composition of garlic from different area, Korean J. Food Sci. Technol. 31, 293-300.
  15. Sohn, E.Y., Kim, Y.H., Jang, S.W., Kim, J.T., Lee, H.S., Seo, D.H., Lee, I.J., 2011. Changes in gibberellin, abscisic Acid, jasmonic acid and sugar contents during bulb development and secondary growth period in the southern type of garlic(Allium sativum L.), Korean J. Hort. Sci. Technol. 29, 279-287.
  16. Steer, B.T., 1980. The bulbing response to day length and temperature of some Australasian cultivars of onion(Allium cepa L.), Aust. J. Agr. Res. 31, 511-518. https://doi.org/10.1071/AR9800511
  17. Walker-Simmons, M., 1987. ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars, Plant Physiol. 84, 61-66. https://doi.org/10.1104/pp.84.1.61
  18. Yamazaki, H., Nishijima, T., Koshioka, M., 1995. Changes in abscisic acid content and water status in bulbs of Allium wakegi Araki throughout the year, J. Japan. Soc. Hort. Sci. 64, 589-598. https://doi.org/10.2503/jjshs.64.589
  19. Yamazaki, H., Nishijima, T., Koshioka, M., Miura, H., 2002. Gibberellins do not act against abscisic acid in the regulation of bulb dormancy of Allium wakegi Araki, Plant Growth Regul. 36, 223-229. https://doi.org/10.1023/A:1016577529378
  20. Yang, J., Zhang, J., Wang, Z., Zhu, Q., Wang, W., 2001. Hormonal changes in the grains of rice subjected to water stress during grain filling, Plant Physiol. 127, 315-323. https://doi.org/10.1104/pp.127.1.315

Cited by

  1. A Missing Value Replacement Method for Agricultural Meteorological Data Using Bayesian Spatio–Temporal Model vol.27, pp.7, 2018, https://doi.org/10.5322/JESI.2018.27.7.499