• Title/Summary/Keyword: Response time analysis

Search Result 4,034, Processing Time 0.034 seconds

Seismic Perfomance Evaluation of Wind-Designed Steel Highrise Buildings Based on Linear Dynamic Analysis (내풍설계된 철골조 초고층건물의 선형동적해석에 의한 내진성능평가)

  • Lee, Cheol-Ho;Kim, Seon-Woong
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.177-184
    • /
    • 2005
  • Even in moderate to low seismic regions like Korean peninsular where wind loading usually governs the structural design of a tall building, the probable structural impact of the design basis earthquake or the maximum credible earthquake on the selected structural system should be considered at least in finalizing the design. In this study, by using response spectrum analysis and time history analysis method, seismic performance evaluation was conducted for wind-designed concentrically braced steel highrise buildings. Input ensemble was normalized to be compatible with expected peak ground acceleration. The analysis results showed that wind-designed concentrically braced steel highrise buildings possess significantly increased elastic seismic capacity due to the system overstrength resulting from the wind-serviceability criterion and the width-to-thickness ratio limits on steel members. The time history analysis tended to significantly underestimated the seismic response as compared to response spectrum analysis. Further detailed studies regarding selection and scaling scheme of input ground motions is needed.

  • PDF

An evaluation of the seismic response of symmetric steel space buildings

  • Yon, Burak
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.399-412
    • /
    • 2016
  • This paper evaluates the seismic response of three dimensional steel space buildings using the spread plastic hinge approach. A numerical study was carried out in which a sample steel space building was selected for pushover analysis and incremental nonlinear dynamic time history analysis. For the nonlinear analysis, three earthquake acceleration records were selected to ensure compatibility with the design spectrum defined in the Turkish Earthquake Code. The interstorey drift, capacity curve, maximum responses and dynamic pushover curves of the building were obtained. The analysis results were compared and good correlation was obtained between the idealized dynamic analyses envelopes with and static pushover curves for the selected building. As a result to more accurately account response of steel buildings, dynamic pushover envelopes can be obtained and compared with static pushover curve of the building.

Flow-induced Vibration Time Response Analysis of Loosely Supported Multi-Span Tube using Commercial FEA Code (지지점 간극을 갖는 다점지지 유연관의 유동하중에 의한 시간응답 이력해석과 상용유한요소 해석코드의 적용)

  • Lee, Kang Hee;Kang, Heung Seok;Shin, Chang Hwan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.68-74
    • /
    • 2015
  • Time domain response analysis for vibro-impact nonlinear behavior of multi-span tube with loose supports was performed using commercial FEA code and user subroutine. Support geometry of multi-span tube with a finite gap is realistically modeled by analytical rigid surface. Model of hydrodynamic force is based on the Qusai-steady model which accounts for the inclined angle of relative flow velocity and time delay between flow force and resulting tube motion. During tube vibration from flow loading, impact and friction at the support location is simulated using commercial FEA code with master slave contact algorithm. Analysis results has reasonable agreement with those of references and test experience. Plan of further refinement of analysis model and future test verification is briefly introduced.

Deep neural network for prediction of time-history seismic response of bridges

  • An, Hyojoon;Lee, Jong-Han
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.401-413
    • /
    • 2022
  • The collapse of civil infrastructure due to natural disasters results in financial losses and many casualties. In particular, the recent increase in earthquake activities has highlighted on the importance of assessing the seismic performance and predicting the seismic risk of a structure. However, the nonlinear behavior of a structure and the uncertainty in ground motion complicate the accurate seismic response prediction of a structure. Artificial intelligence can overcome these limitations to reasonably predict the nonlinear behavior of structures. In this study, a deep learning-based algorithm was developed to estimate the time-history seismic response of bridge structures. The proposed deep neural network was trained using structural and ground motion parameters. The performance of the seismic response prediction algorithm showed the similar phase and magnitude to those of the time-history analysis in a single-degree-of-freedom system that exhibits nonlinear behavior as a main structural element. Then, the proposed algorithm was expanded to predict the seismic response and fragility prediction of a bridge system. The proposed deep neural network reasonably predicted the nonlinear seismic behavior of piers and bearings for approximately 93% and 87% of the test dataset, respectively. The results of the study also demonstrated that the proposed algorithm can be utilized to assess the seismic fragility of bridge components and system.

Dynamic Analysis of a Gear Driving System with Time-varying Mesh Stiffness/Damping and Friction (변동물림강성/감쇠와 마찰을 고려한 기어구동계의 동특성 해석)

  • Kim, Woo-Hyung;Jung, Tae-Il;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.224-231
    • /
    • 2006
  • A six-degree-of-freedom dynamic model with time-varying mesh stiffness/damping and friction has been developed for the dynamic analysis of a gear driving system. This model includes a spur gear pair, bearing, friction and prime mover. Using Newton???s method, equations of motion for the gear driving system were derived. Two computer programs are developed to calculate mesh stiffness, transmission error and friction force and analyze the dynamics of the modeled system using a time integration method. The influences of mesh stiffness/damping, bearing, and friction affecting the system were investigated by performing eigenvalue analysis and time response analysis. It is found that the reduction of the maximum peak magnitude by friction is decided according to designing the positions of pitch point and maximum peak in the responses.

  • PDF

Response Time Analysis Considering Sensing Data Synchronization in Mobile Cloud Applications (모바일 클라우드 응용에서 센싱 데이터 동기화를 고려한 응답 시간 분석)

  • Min, Hong;Heo, Junyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.137-141
    • /
    • 2015
  • Mobile cloud computing uses cloud service to solve the resource constraint problem of mobile devices. Offloading means that a task executed on the mobile device commits to cloud and many studies related to the energy consumption have been researched. In this paper, we designed a response time model considering sensing data synchronization to estimate the efficiency of the offloading scheme in terms of the response time. The proposed model considers synchronization of required sensing data to improve the accuracy of response time estimation when cloud processes the task requested from a mobile device. We found that the response time is effected by new sensing data generation rate and synchronization period through simulation results.

Determination of The Optimal Utilization of The UNIX Systems (UNIX 시스템의 최적 이용율 결정)

  • Im, Jong-Seol
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.5
    • /
    • pp.807-813
    • /
    • 1995
  • This paper proposes a method to determine the optimal utilizations of the UNIX systems. This method is developed using the definition-the optimal utilization is the maximum allowable utilization. In other words, the optimal utilization is the maximum utilization that can be allowed by users while providing tolerable response time. As the tolerable response time increases, the optimal utilization increases. Therefore, the optimal utilization is obtained at the maximal value of tolerable response time. Our analysis shows tolerable response time is achieved when the average of the trivial response time is less than 0.24 seconds for a given service objective. It also shows the optimal utilization consists of three components-%wio, and %usr. By way of example, the optimal utilizations of a machine (IBM 3081) running under the UNIX operating system are computed are computed using the proposed method.

  • PDF

A User-Centric Response Time Analyzer for Improving User Experience of Android Applications (스마트폰 응용 프로그램의 사용자 경험 향상을 위한 사용자 중심 반응 시간 분석 도구)

  • Song, Wook;Sung, Nosub;Kim, Jihong
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.5
    • /
    • pp.379-386
    • /
    • 2015
  • We propose a novel user-perceived performance optimization framework for the Android platform that takes advantage of the user-centric response time analysis. To this end, we propose a new definition of response time, which we call the user-centric response time, as a metric for the quality of user-perceived performance of the smartphone application. In this paper, we describe the design and implementation of an on-line user-centric response time analyzer for Android-based smartphones, which provides smartphone application developers with valuable insight for user-perceived performance optimization. We implemented the user-centric response time analyzer on the Android platform, version 4.0.4 (ICS) running on a Galaxy Nexus smartphone. From our experimental results, the proposed user-centric response time analyzer accurately estimates user-centric response times with an accuracy of 92.0% compared to manually measured times with less than 1% performance penalty. In order to evaluate the efficiency of the proposed framework, we were able to reduce the user-centric response time of the target application by up to 16.4% based on the evaluation results by the proposed framework.

Low-Velocity Impact Response Analysis of Composite Laminates Considering Higher Order Shear Deformation and Large Deflection (고차전단변형과 대처짐을 고려한 복합적층판의 저속충격거동 해석)

  • 최익현;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2982-2994
    • /
    • 1993
  • Low-velocity impact responses of composite laminates are investigated using the finite element method based on various theories. In two-dimensional nonlinear analysis, a displacement field considering higher order shear deformation and large deflection of the laminate is assumed and a finite element formulation is developed using a C$^{o}$-continuous 9-node plate element. Also, three-dimensional linear analysis based on the infinitesimal strain-displacement assumptions is performed using 8-node brick elements with incompatible modes. A modified Hertzian contact law is incorporated into the finite element program to evaluate the impact force. In the time integration, the Newmark constant acceleration algorithm is used in conjuction with successive iterations within each time step. Numerical results from static analysis as well as the impact response analysis are presented including impact force histories, deflections, strains in the laminate. Impact responses according to two typical low-velocity impact conditions are compared each other.

Three-dimensional analysis of flexible pavement in Nepal under moving vehicular load

  • Ban, Bijay;Shrestha, Jagat K.;Pradhananga, Rojee;Shrestha, Kshitij C.
    • Advances in Computational Design
    • /
    • v.7 no.4
    • /
    • pp.371-393
    • /
    • 2022
  • This paper presents a three-dimensional flexible pavement simulated in ANSYS subjected to moving vehicular load on the surface of the pavement typical for the road section in Nepal. The adopted finite element (FE) model of pavement is validated with the classical theoretical formulations for half-space pavement. The validated model is further utilized to understand the damping and dynamic response of the pavement. Transient analysis of the developed FE model is done to understand the time varying response of the pavement under a moving vehicle. The material properties of pavement considered in the analysis is taken from typical road section used in Nepal. The response quantities of pavement with nonlinear viscoelastic asphalt layer are found significantly higher compared to the elastic pavement counterpart. The structural responses of the pavement decrease with increase in the vehicle speed due to less contact time between the tires of the vehicle and the road pavement.