• Title/Summary/Keyword: Respiratory Sensor

Search Result 90, Processing Time 0.026 seconds

Functional disposable use flow tube converting the respiratory air flow rate into averaged dynamic pressure (호흡기류를 동압력으로 변환하는 기능성 일회용 호흡관)

  • Kim, Kyung-Ah;Kim, Hyun-Shik;Lee, Tae-Soo;Cha, Eun-Jong
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.125-131
    • /
    • 2002
  • Respiratory air flow rate is necessarily measured for the pulmonary function evaluation. The currently used devices are exposed to the problems of measurement reliability and cross-patient infection. The present study introduced a new technique which converted the bidirectional air flow rate into averaged dynamic pressure based on the famous Bernoulli's energy conservation principle. Single use plastic sensing element was assembled within the flow tube(mouth piece) made of paper, which was named "functional single use flow tube". Experiment demonstrated only ${\pm}1.5%$ relative error in the standard 3L volume measurement procedure well within the error limit suggested by the American Thoracic Society(ATS). Disposable use design completely eliminated cross-patient infection. The present device is best useful and safe for clinical respiratory air flow measurement such as spirometry.

Unconstrained REM Sleep Monitoring Using Polyvinylidene Fluoride Film-Based Sensor in the Normal and the Obstructive Sleep Apnea Patients (PVDF 필름 기반 센서를 이용한 정상인 및 폐쇄성 수면 무호흡증 환자에서의 무구속적인 렘 수면 모니터링)

  • Hwang, Su Hwan;Yoon, Hee Nam;Jung, Da Woon;Seo, Sang Won;Lee, Yu Jin;Jeong, Do-Un;Park, Kwang Suk
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.55-61
    • /
    • 2014
  • In sleep monitoring system, polysomnography (PSG) is the gold-standard but previous studies revealed that attaching numerous amount of sensors disturb sleep during the test which is the fundamental disadvantage of PSG. We suggest an unconstrained rapid-eye-movement (REM) sleep monitoring method measured with polyvinylidene (PVDF) film-based sensor for the normal and the obstructive sleep apnea (OSA) patients. Nine normal subjects and seventeen OSA patients have participated in the study. During REM sleep, rate and variability of respiration are known to be greater than in other sleep stages. Based on this phenomena, respiratory signals of participants were unconstrainedly measured using the PVDF-based sensor with the PSG and REM sleep were extracted from the average rate and variability of respiration. In epoch-by-epoch REM sleep detection, proposed method classified REM sleep with an average sensitivity of 72.3%, specificity of 92.5%, accuracy of 88.9%, and kappa statistic of 0.60 compared to the results of PSG. Student's t-test showed no significant difference between the results of normal and OSA group. This method is potentially applicable to REM sleep detection in homing environment or ambulatory monitoring.

Effectiveness of the Respiratory Gating System for Stereotectic Radiosurgery of Lung Cancer (폐암 환자의 정위적 방사선 수술 시 Respiratory Gating System의 유용성에 대한 연구)

  • Song Heung-Kwon;Kwon Kyung-Tae;Park Cheol-Su;Yang Oh-Nam;Kim Min-Su;Kim Jeong-Man
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.2
    • /
    • pp.125-131
    • /
    • 2005
  • Purpose : For stereotactic radiosurgery (SRS) of a tumor in the region whose movement due to respiration is significant, like Lung lower lobe, the gated therapy, which delivers radiation dose to the selected respiratory phases when tumor motion is small, was performed using the Respiratory gating system and its clinical effectiveness was evaluated. Materials and Methods : For two SRS patients with a tumor in Lung lower lobe, a marker block (infrared reflector) was attached on the abdomen. While patient' respiratory cycle was monitored with Real-time Position Management (RPM, Varian, USA), 4D CT was performed (10 phases per a cycle). Phases in which tumor motion did not change rapidly were decided as treatment phases. The treatment volume was contoured on the CT images for selected treatment phases using maximum intensity projection (MIP) method. In order to verify setup reproducibility and positional variation, 4D CT was repeated. Results : Gross tumor volume (GTV) showed maximum movement in superior-inferior direction. For patient #1, motion of GTV was reduced to 2.6 mm in treatment phases ($30{\sim}60%$), while that was 9.4 mm in full phases ($0{\sim}90%$) and for patient #2, it was reduced to 2.3 mm in treatment phases ($30{\sim}70%$), while it was 11.7 mm in full phases ($0{\sim}90%$). When comparing two sets of CT images, setup errors in all the directions were within 3 mm. Conclusion : Since tumor motion was reduced less than 5 mm, the Respiratory gating system for SRS of Lung lower lobe is useful.

  • PDF

An Exploratory Research for Development of Design of Sensor-based Smart Clothing - Focused on the Healthcare Clothing Based on Bio-monitoring Technology - (센서 기반형 스마트 의류의 디자인 개발을 위한 탐색적 연구 - 생체 신호 센서 기술에 기반한 건강관리용 의류를 중심으로 -)

  • Cho Ha-Kyung;Lee Joo-Hyeon;Lee Chung-Keun;Lee Myoung-Ho
    • Science of Emotion and Sensibility
    • /
    • v.9 no.2
    • /
    • pp.141-150
    • /
    • 2006
  • Since the late 1990s, 'smart clothing' has been developed in a various way to meet the need of users and to help people more friendly interact with computers through its various designs. Recently, various applications of smart clothing concept have been presented by researchers. Among the various applications, smart clothing with a health care system is most likely to gain the highest demand rate in the market. Among them, smart clothing for check-up of health status with its sensors is expected to sell better than other types of smart clothing on the market. Under this circumstance, research and development for this field have been accelerated furthermore. This research institution has invented biometric sensors suitable for the smart clothing, and has developed a design to diagnose various diseases such as cardiac disorder and respiratory diseases. The newly developed smart clothing in this study looks similar to the previous inventions, but people can feel more comfortable in it with its fabric interaction built in it. When people wear it, the health status of the wearers is diagnosed and its signals are transmitted to the connected computer so the result can be easily monitored in real time. This smart clothing is a new kind of clothing as a supporting system for preventing various cardiac disorder and respiratory diseases using its biometric sensor built-in, and is also an archetype to show how smart clothing can work on the market.

  • PDF

A Study on the Sensitivity Elevation about Spirometer Using Ultrasound Sensing Method (초음파 센싱 방식의 spirometer에 대한 sensitivity 향상 연구)

  • Han, Seung-Heon;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.1
    • /
    • pp.204-209
    • /
    • 2005
  • The respiration measurement method using the ultrasound sensor hardly gets an influence of an error of inertia and pressure and it is a respiratory detection device available semi-permanently. This device measures the amount and flow of respiration through using a delivery speed difference of the ultrasound waves that are a return format by the pneumatic stream that is a flogging of ultrasound waves during transmission and receipt as having used a characteristic of ultrasound waves. In this paper, it improved sensitivity of a signal to happen during transmission and receipt of a sensor because measurement must be performed with a patient to the center and measurement was played in a weak breathing so that it was possible.

A Remote Rehabilitation System using Kinect Stereo Camera (키넥트 스테레오 영상을 이용한 원격 재활 시스템)

  • Kim, Kyungah;Chung, Wan-Young;Kim, Jong-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.196-201
    • /
    • 2016
  • Rehabilitation exercises are the treatments designed to help patients who are in the process of recovery from injury or illness to restore their body functions back to the original status. However, many patients suffering from chronic diseases have found difficulties visiting hospitals for the rehabilitation program due to lack of transportation, cost of the program, their own busy schedules, etc. Also, the program usually contains a few medical check-ups which can cause patients to feel uncomfortable. In this paper, we develop a remote rehabilitation system with bio-signals by a stereo camera. A Kinect stereo camera manufactured by Microsoft corporation was used to recognize the body movement of a patient by using its infrared(IR) camera. Also, we detect the chest area of a user from the skeleton data and process to gain respiratory status. ROI coordinates are created on a user's face to detect photoplethysmography(PPG) signals to calculate heart rate values from its color sensor. Finally, rehabilitation exercises and bio-signal detecting features are combined into a Windows application for the cost effective and high performance remote rehabilitation system.

A Study on the Ontology-Based Context Aware System for MBAN (MBAN(Medical Body Area Network)에서의 온톨로지 기반 상황인지 시스템 개발에 관한 연구)

  • Wang, Jong Soo;Lee, Dong Ho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.1
    • /
    • pp.19-29
    • /
    • 2011
  • The u-Healthcare system, a new paradigm, provides healthcare and medical service anytime, anywhere in daily life using wired and wireless networks. It only doesn't reach u-Hospital at home, to manage efficient personal health in fitness space, it is essential to feedback process through measuring and analyzing a personal vital signs. MBAN(Medical Body Area Network) is a core of this technology. MBAN, a new paradigm of the u-Healthcare system, can provide healthcare and medical service anytime, anywhere on real time in daily life using u-sensor networks. In this paper, an ontology-based context-awareness in MBAN proposed system development methodology. Accordingly, ontology-based context awareness system on MBAN to Elderly/severe patients/aged/, with measured respiratory rate/temperature/pulse and vital signs having small variables through u-sensor network in real-time, discovered abnormal signs and emergency situations which may happen to people at sleep or activity, alarmed and connected with members of a family or medical emergency alarm(Emergency Call) and 119 system to avoid sudden accidents for early detection. Therefore, We have proposed that accuracy of biological signal sensing and the confidence of ontology should be inspected.

Development of Real-time Environment Monitoring System Using 3G Integrated Environmental Sensors Based on AWS (AWS기반 3G 통합환경센서 모듈을 이용한 실시간 환경 모니터링 시스템 개발)

  • Chun, Seung-Man;Lee, Seung-Jun;Yun, Jang-Kyu;Suk, Soo-Young
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.2
    • /
    • pp.101-107
    • /
    • 2018
  • As indoor pollutants such as carbon dioxide and dust mainly affect the respiratory and circulatory systems, there is an increasing need for real-time indoor / outdoor environmental monitoring. In this paper, we have developed a real - time environmental monitoring system using the cloud-based 3G integrated environmental sensor module for environmental monitoring. A highly reliable environmental information monitoring system requires various IT technologies such as infrastructure (server, commercial software, etc.), service application software, security, and authentication. A real-time environment monitoring system based on cloud service that can provide reliable service satisfying these configuration requirements is proposed and implemented. It is expected that this system can be applied to various technologies such as indoor automatic window opening/closing system based on the Internet.

Development of a portable system for monitoring indoor particulate matter concentration (휴대용 실내 미세먼지 농도 측정 장치 개발)

  • Kim, Yoo Jin;Choi, Hyun Seul;Go, Taesik
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.1
    • /
    • pp.45-51
    • /
    • 2022
  • Airborne particulate matter(PM) has been a global environmental problem. PM whose diameter is smaller than 10 ㎛ can permeate respiratory organs and has harmful effects on human health. Therefore, PM monitoring systems are necessary for management of PM and prevention of PM-induced negative effects. Conventional PM monitoring techniques are expensive and cumbersome to handle. In the present study, two types of PM monitoring devices were designed for measuring indoor PM concentration, portably. We experimentally investigated the performance of three commercial PM concentration measurement sensors in a closed test chamber. As a result, PM2008 sensor showed the best PM concentration measurement accuracy. Linear regression method was applied to convert PM concentration value acquired from PM2008 sensor into ground truth value. A mobile application(app.) was also created for users to check the PM concentration, easily. The mobile app. also provides safety alarm when the PM10 concentration exceeds 81 ㎛/m3. The developed hand-held system enables the facile monitoring of surrounding air quality.

Systolic blood pressure measurement algorithm with mmWave radar sensor

  • Shi, JingYao;Lee, KangYoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1209-1223
    • /
    • 2022
  • Blood pressure is one of the key physiological parameters for determining human health, and can prove whether human cardiovascular function is healthy or not. In general, what we call blood pressure refers to arterial blood pressure. Blood pressure fluctuates greatly and, due to the influence of various factors, even varies with each heartbeat. Therefore, achievement of continuous blood pressure measurement is particularly important for more accurate diagnosis. It is difficult to achieve long-term continuous blood pressure monitoring with traditional measurement methods due to the continuous wear of measuring instruments. On the other hand, radar technology is not easily affected by environmental factors and is capable of strong penetration. In this study, by using machine learning, tried to develop a linear blood pressure prediction model using data from a public database. The radar sensor evaluates the measured object, obtains the pulse waveform data, calculates the pulse transmission time, and obtains the blood pressure data through linear model regression analysis. Confirm its availability to facilitate follow-up research, such as integrating other sensors, collecting temperature, heartbeat, respiratory pulse and other data, and seeking medical treatment in time in case of abnormalities.