• Title/Summary/Keyword: Resonance structures

Search Result 761, Processing Time 0.03 seconds

NMR hydrogen exchange study of miR156:miR156* duplexes

  • Kim, Na-Hyun;Choi, Seo-Ree;Jin, Ho-Seong;Seo, Yeo-Jin;Lee, Joon-Hwa
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.3
    • /
    • pp.61-66
    • /
    • 2019
  • RNAs exhibit distinct structural and dynamic features required for proper function. The hydrogen-bonded imino protons of RNAs are a probe of the conformational transition and dynamic feature. MicroRNAs originate from primary transcripts containing hairpin structures. The levels of mature miR156 influence the flowering time of plants. To understand the molecular mechanism of biological function of $miR156:miR156^*$ duplex, we performed hydrogen exchange study on the model RNAs mimicking two phenotypes of $miR156:miR156^*$, $miR156:miR156^*$ (m-miR156a) and $miR156:miR156^*$ (m-miR156g) duplexes. This study found that the internal bulge of m-miR156a destabilized the neighboring base-pairs, whereas the bulge structure of m-miR156g did not affect the thermal stabilities of the neighboring base-pairs.

Convolutional Neural Network-Based Automatic Segmentation of Substantia Nigra on Nigrosome and Neuromelanin Sensitive MR Images

  • Kang, Junghwa;Kim, Hyeonha;Kim, Eunjin;Kim, Eunbi;Lee, Hyebin;Shin, Na-young;Nam, Yoonho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.3
    • /
    • pp.156-163
    • /
    • 2021
  • Recently, neuromelanin and nigrosome imaging techniques have been developed to evaluate the substantia nigra in Parkinson's disease. Previous studies have shown potential benefits of quantitative analysis of neuromelanin and nigrosome images in the substantia nigra, although visual assessments have been performed to evaluate structures in most studies. In this study, we investigate the potential of using deep learning based automatic region segmentation techniques for quantitative analysis of the substantia nigra. The deep convolutional neural network was trained to automatically segment substantia nigra regions on 3D nigrosome and neuromelanin sensitive MR images obtained from 30 subjects. With a 5-fold cross-validation, the mean calculated dice similarity coefficient between manual and deep learning was 0.70 ± 0.11. Although calculated dice similarity coefficients were relatively low due to empirically drawn margins, selected slices were overlapped for more than two slices of all subjects. Our results demonstrate that deep convolutional neural network-based method could provide reliable localization of substantia nigra regions on neuromelanin and nigrosome sensitive MR images.

Synthesis and Application of Magnetoplasmonic Nanoparticles (마그네토플라즈모닉 나노 자성 입자의 합성과 응용)

  • Park, Sejeong;Hwang, Siyeong;Jung, Seonghwan;Gwak, Juyong;Lee, Jaebeom
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.429-434
    • /
    • 2021
  • Magnetic nanoparticles have a significant impact on the development of basic sciences and nanomedical, electronic, optical, and biotech industries. The development of magnetic structures with size homogeneity, magnetization, and particle dispersibility due to high-quality process development can broaden their utilization for separation analysis, structural color optics using surface modification, and energy/catalysts. In addition, magnetic nanoparticles simultaneously exhibit two properties: magnetic and plasmon resonance, which can be self-assembled and can improve signal sensitivity through plasmon resonance. This paper reports typical examples of the synthesis and properties of various magnetic nanoparticles, especially magnetoplasmonic nanoparticles developed in our laboratory over the past decade, and their optical, electrochemical, energy/catalytic, and bio-applications. In addition, the future value of magnetoplasmonic nanoparticles can be reevaluated by comparing them with that reported in the literature.

Characterization of Ag/TiO2 Nanoparticles Synthesis (Ag/TiO2미세입자 합성물의 특성 분석)

  • Kyungho Kang;Yonggi Jo;Sun-Geum Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.202-207
    • /
    • 2024
  • This study examines a manufacturing process for the photoelectrode material of dye-sensitized solar cell (DSSC) intending to increase efficiency through the surface plasmon resonance phenomenon of nanoparticles with a composite structure made of Ag and TiO2. This invention involves the use of Ag and TiO2 nanoparticles in the solar cell. These nanoparticles cause surface plasmon resonance, which amplifies and scatters incident solar energy, enhancing the dye's rate of light absorption. It also makes it possible to absorb energy in wavelength ranges that were previously difficult to do, which increases efficiency. Centrifugal separation and heat synthesis are used to create the composite metal structures, and certain combinations are used to decide the particle morphologies. To increase the efficiency of organic solar cells and DSSC, the Ag/TiO2 composite structure is therefore quite likely to be used.

Resonance Type Acoustic Emission Signal Analyzing Method for the failure detection of the composite materials (복합재료의 파손 감지를 위한 동조형 음향방출 신호분석 기법)

  • Lee, Chang-Hun;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.30-36
    • /
    • 2004
  • As fiber reinforced composite materials are widely used in aircraft, space structures and robot arms, the study on the non-destructive testing methods of the composite materials has become an important research area for improving their reliability and safety. In this paper, the AE signal analyzer with the resonance circuit to extract the specified frequency of the acoustic emission signal were designed and fabricated. The noise levels of the fabricated AE signal analyzer by the disturbance such as impact or mechanical vibration had a very small value comparable to those of the conventional AE signal analyzer. Also, the fabricated AE signal analyzer was proved to have about the same crack detection capabilities with the conventional AE signal analyzer under the static and dynamic tensile tests of the composite materials.

Glycosyl glycerides from the stems of 'Baekma' cultivar of Chrysanthemum morifolium (국화 '백마'(Chrysanthemum morifolium) 줄기로부터 glycosyl glyceride 의 분리 및 동정)

  • Oh, Hyun-Ji;Kim, Hyoung-Geun;Pak, Ha-Seung;Baek, Yun-Su;Kwon, Oh-Keun;Shin, Hak-Ki;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.2
    • /
    • pp.131-134
    • /
    • 2018
  • The stem of Chrysanthemum morifolium, 'Baekma', were repeatedly extracted with 80% aqueous MeOH and the concentrates was partitioned into ethyl acetate (EtOAc), n-butyl alcohol and $H_2O$ fraction. The repeated silica gel and octadecyl silica gel column chromatographies for the EtOAc fractions led to isolation of two glycosyl glycerides. The chemical structures of the compounds were determined as (2S)-1-O-${\beta}-{\text\tiny{D}}$-galactopyranosyl-2,3-dilinoleoylglycerol (1) and (2S)-1-O-${\beta}-{\text\tiny{D}}$-galactopyranosyl-2,3-dipalmitoylglycerol (2) based on spectroscopic data anlyses including nuclear magnetic resonance, mass sperctrometry, and infrared spectrometry and gas chromatography mass spectrometry.

Using Bayesian Approaches to Reduce Truncation Artifact in Magnetic Resonance Imaging

  • Lee, Su-Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.6
    • /
    • pp.585-593
    • /
    • 1998
  • In Fourier magnetic resonance imaging (MRI), the number of phase encoded signals is often reduced to minimize the duration of the studies and maintain adequate signal-to-noise ratio. However, this results in the well-known truncation artifact, whose effect manifests itself as blurring and ringing in the image domain. In this paper, we propose a new regularization method in the context of a Bayesian framework to reduce truncation artifact. Since the truncation artifact appears in t도 phase direction only, the use of conventional piecewise-smoothness constraints with symmetric neighbors may result in the loss of small details and soft edge structures in the read direction. Here, we propose more elaborate forms of constraints than the conventional piecewise-smoothness constraints, which can capture actual spatial information about the MR images. Our experimental results indicate that the proposed method not only reduces the truncation artifact, but also improves tissue regularity and boundary definition without oversmoothing soft edge regions.

  • PDF

Accelerated Resting-State Functional Magnetic Resonance Imaging Using Multiband Echo-Planar Imaging with Controlled Aliasing

  • Seo, Hyung Suk;Jang, Kyung Eun;Wang, Dingxin;Kim, In Seong;Chang, Yongmin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.4
    • /
    • pp.223-232
    • /
    • 2017
  • Purpose: To report the use of multiband accelerated echo-planar imaging (EPI) for resting-state functional MRI (rs-fMRI) to achieve rapid high temporal resolution at 3T compared to conventional EPI. Materials and Methods: rs-fMRI data were acquired from 20 healthy right-handed volunteers by using three methods: conventional single-band gradient-echo EPI acquisition (Data 1), multiband gradient-echo EPI acquisition with 240 volumes (Data 2) and 480 volumes (Data 3). Temporal signal-to-noise ratio (tSNR) maps were obtained by dividing the mean of the time course of each voxel by its temporal standard deviation. The resting-state sensorimotor network (SMN) and default mode network (DMN) were estimated using independent component analysis (ICA) and a seed-based method. One-way analysis of variance (ANOVA) was performed between the tSNR map, SMN, and DMN from the three data sets for between-group analysis. P < 0.05 with a family-wise error (FWE) correction for multiple comparisons was considered statistically significant. Results: One-way ANOVA and post-hoc two-sample t-tests showed that the tSNR was higher in Data 1 than Data 2 and 3 in white matter structures such as the striatum and medial and superior longitudinal fasciculus. One-way ANOVA revealed no differences in SMN or DMN across the three data sets. Conclusion: Within the adapted metrics estimated under specific imaging conditions employed in this study, multiband accelerated EPI, which substantially reduced scan times, provides the same quality image of functional connectivity as rs-fMRI by using conventional EPI at 3T. Under employed imaging conditions, this technique shows strong potential for clinical acceptance and translation of rs-fMRI protocols with potential advantages in spatial and/or temporal resolution. However, further study is warranted to evaluate whether the current findings can be generalized in diverse settings.

Distinction between Intradural and Extradural Aneurysms Involving the Paraclinoid Internal Carotid Artery with T2-Weighted Three-Dimensional Fast Spin-Echo Magnetic Resonance Imaging

  • Lee, Nam;Jung, Jin-Young;Huh, Seung-Kon;Kim, Dong-Joon;Kim, Dong-Ik;Kim, Jin-Na
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.6
    • /
    • pp.437-441
    • /
    • 2010
  • Objective : The precise intra- vs. extradural localization of aneurysms involving the paraclinoid internal carotid artery is critical for the evaluation of patients being considered for aneurysm surgery. The purpose of this study was to investigate the clinical usefulness of T2-weighted threedimensional (3-D) fast spin-echo (FSE) magnetic resonance (MR) imaging in the evaluation of unruptured paraclinoid aneurysms. Methods : Twenty-eight patients with unruptured cerebral aneurysms in their paraclinoid regions were prospectively evaluated using a T2- weighted 3-D FSE MR imaging technique with oblique coronal sections. The MR images were assessed for the location of the cerebral aneurysm in relation to the dural ring and other surrounding anatomic compartments, and were also compared with the surgical or angiographic findings. Results : All 28 aneurysms were identified by T2-weighted 3D FSE MR imaging, which showed the precise anatomic relationships in regards to the subarachnoid space and the surrounding anatomic structures. Consequently, 13 aneurysms were determined to be intradural and the other 15 were deemed extradural as they were confined to the cavernous sinus. Of the 13 aneurysms with intradural locations, three superior hypophyseal artery aneurysms were found to be situated intradurally upon operation. Conclusion : High-resolution T2-weighted 3-D FSE MR imaging is capable of confirming whether a cerebral aneurysm at the paraclinoid region is intradural or extradural, because of the MR imaging's high spatial resolution. The images may help in identifying patients with intradural aneurysms who require treatment, and they also can provide valuable information in the treatment plan for paraclinoid aneurysms.

Reduced Gray Matter Volume of Auditory Cortical and Subcortical Areas in Congenitally Deaf Adolescents: A Voxel-Based Morphometric Study

  • Tae, Woo-Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Purpose: Several morphometric studies have been performed to investigate brain abnormalities in congenitally deaf people. But no report exists concerning structural brain abnormalities in congenitally deaf adolescents. We evaluated the regional volume changes in gray matter (GM) using voxel-based morphometry (VBM) in congenitally deaf adolescents. Materials and Methods: A VBM8 methodology was applied to the T1-weighted magnetic resonance imaging (MRI) scans of eight congenitally deaf adolescents (mean age, 15.6 years) and nine adolescents with normal hearing. All MRI scans were normalized to a template and then segmented, modulated, and smoothed. Smoothed GM data were tested statistically using analysis of covariance (controlled for age, gender, and intracranial cavity volume). Results: The mean values of age, gender, total volumes of GM, and total intracranial volume did not differ between the two groups. In the auditory centers, the left anterior Heschl's gyrus and both inferior colliculi showed decreased regional GM volume in the congenitally deaf adolescents. The GM volumes of the lingual gyri, nuclei accumbens, and left posterior thalamic reticular nucleus in the midbrain were also decreased. Conclusions: The results of the present study suggest that early deprivation of auditory stimulation in congenitally deaf adolescents might have caused significant underdevelopment of the auditory cortex (left Heschl's gyrus), subcortical auditory structures (inferior colliculi), auditory gain controllers (nucleus accumbens and thalamic reticular nucleus), and multisensory integration areas (inferior colliculi and lingual gyri). These defects might be related to the absence of general auditory perception, the auditory gating system of thalamocortical transmission, and failure in the maturation of the auditory-to-limbic connection and the auditorysomatosensory-visual interconnection.