DOI QR코드

DOI QR Code

NMR hydrogen exchange study of miR156:miR156* duplexes

  • Kim, Na-Hyun (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Choi, Seo-Ree (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Jin, Ho-Seong (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Seo, Yeo-Jin (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Lee, Joon-Hwa (Department of Chemistry and RINS, Gyeongsang National University)
  • Received : 2019.08.13
  • Accepted : 2019.09.15
  • Published : 2019.09.20

Abstract

RNAs exhibit distinct structural and dynamic features required for proper function. The hydrogen-bonded imino protons of RNAs are a probe of the conformational transition and dynamic feature. MicroRNAs originate from primary transcripts containing hairpin structures. The levels of mature miR156 influence the flowering time of plants. To understand the molecular mechanism of biological function of $miR156:miR156^*$ duplex, we performed hydrogen exchange study on the model RNAs mimicking two phenotypes of $miR156:miR156^*$, $miR156:miR156^*$ (m-miR156a) and $miR156:miR156^*$ (m-miR156g) duplexes. This study found that the internal bulge of m-miR156a destabilized the neighboring base-pairs, whereas the bulge structure of m-miR156g did not affect the thermal stabilities of the neighboring base-pairs.

Keywords

References

  1. J. L. Leroy, N. Bolo, N. Figueroa, P. Plateau, and M. Gueron, J. Biomol. Struct. Dyn. 2, 915 (1985) https://doi.org/10.1080/07391102.1985.10507609
  2. M. Gueron and J. L. Leroy, Methods Enzymol. 261, 383 (1995) https://doi.org/10.1016/S0076-6879(95)61018-9
  3. S.-R.Choi, N.-H. Kim, H.-S. Jin, Y.-J. Seo, J. Lee, and J.-H. Lee, Comp. Struct. Biotechnol. J. 17, 797 (2019) https://doi.org/10.1016/j.csbj.2019.06.008
  4. J.-H. Lee and A. Pardi, Nucleic Acids Res. 35, 2965 (2007) https://doi.org/10.1093/nar/gkm184
  5. W. Kim, H.-E. Kim, A.-R. Lee, A R. Jun, M. G. Jung, J. H. Ahn, and J.-H. Lee, Nucleic Acids Res. 45, 875 (2017) https://doi.org/10.1093/nar/gkw747
  6. H.-E. Kim, W. Kim, A.-R. Lee, S. Jin, A R. Jun, N.-K. Kim, J.-H. Lee, and J. H. Ahn, Biochem. Biophys. Res. Commun. 484, 839 (2017) https://doi.org/10.1016/j.bbrc.2017.01.185
  7. J. C. Carrington and V. Ambros, Science 301, 336 (2003) https://doi.org/10.1126/science.1085242
  8. H. Lee, S. J. Yoo, J. H. Lee, W. Kim, S. K. Yoo, H. Fitzgerald, J.C. Carrington, and J. H. Ahn, Nucleic Acids Res. 38, 3081 (2010) https://doi.org/10.1093/nar/gkp1240
  9. G. Wu and R. S. Poethig, Development 133, 3539 (2006) https://doi.org/10.1242/dev.02521
  10. F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, and A. Bax, A. J. Biomol. NMR 6, 277 (1995)
  11. T. D. Goddard and D. G. Kneller, SPARKY 3. University of California, San Francisco, CA. (2003)
  12. H.-E. Kim, Y.-G. Choi, A.-R. Lee, Y.-J. Seo, M.-Y. Kwon, and J.-H. Lee, J. Korean Magn. Reson. Soc. 18, 52 (2014) https://doi.org/10.6564/JKMRS.2014.18.2.052
  13. Y.-G. Choi, H.-E. Kim, and J.-H. Lee, J. Korean Magn. Reson. Soc. 17, 76 (2013) https://doi.org/10.6564/JKMRS.2013.17.2.076