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Abstract ; In Fourier magnetic resonance imaging (MRI), the number of phase encoded signals is often reduced to mmnimize the duration
of the studies and maintain adequate signal-to-noise ratio. However, this results in the well-known truncation artifact, whose effect mani-
fests itself as blurring and ringing in the image domain. In this paper, we propose a new regularization method in the context of a
Bayesian framework to reduce truncation artifact. Since the truncation artifact appears in the phase direction only, the use of convention-
al piecewise-smoothness constraints with symmetric neighbors may result in the loss of small details and soft edge structures in the read
direction. Here, we propose more elaborate forms of constraints than the conventional piecewise-smoothness constraints, which can cap-
ture actual spatial information about the MR images. Our experimental results indicate that the proposed method not only reduces the

truncation artifact, but also improves tissue regularity and boundary definition without oversmoothing soft edge regions.
Key words . Magnetic Resonance Imaging, Truncation Artifact, Bayesian Methods, Gibbs Distribution, Deterministic Annealing

INTRODUCTION

In magnetic resonance (MR) imaging, the numerical value
of each pixel in the image reflects the intensity of the MR
signal, which is determined by the density of the resonating
nuclei and by two chemical parameters called the longitudi
nal relaxation ttme T, and spin-spin relaxation time Ty 1].
Spatially-resoived information from those parameters can be
encoded in the measured data in a variety of ways. After
more than a decade of evolution In data acquisition strate-
gies (pulse sequences), the Fourier-encoding scheme has be-

come most popular.
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In conventional Fourier imaging, such as spin-echo and
Inversion recovery, the nuclei in the image slice are selec-
tively “excited” by the application of a frequency-selective
pulse in the presence of a field gradient perpendicular to
the imaging plane. The bandwidth of the radio-frequency
(RF) pulse and the strength of the gradient field (G,) de-
termine the slice thickness. In order to resolve the signal
amplitude in the 2-D Fourier space (k-space), the applica-
tion of G, is followed by the two additional periods -
“phase encoding” and “readout”. During the phase-encoding
period, a gradient G, on the imaging plane 1s applied and
causes the nuclel to precess at characteristic frequencies of
their location with respect to the y coordinate. The readout
period is to acquire the signal in -the presence of another
gradient G, on the imaging plane, which is perpendicular to
G, Depending on the location of the nuclel with respect to
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x, the nuclei resonate at characteristic frequencies deter-
mined by the strength of G.

Although the signal obtained from the three periods (exci-
tation, phase encoding, and readout) contains information
from all voxels in the imaging slice, the information is not
sufficient to determine the signal amplitude required in each
voxel to reconstruct an image. Therefore, in order to fill in
the 2-D Fourier space (k, k,) in a rectilinear fashion, the
cycle of the three periods has to be “repeated” with a dif-
ferent setting of the phase-encoding gradient G, For a 256
x 256 matrix, for example, the required number of cycles is
256; the 256 free induction decay signals, each correspond-
ing to a different value of the phase-encoding gradient G,
have to he sampled 256 times. In practice, the number of
phase-encoded signals 1s often reduced to minimize the
acquisition time and maintain adequate signal-to-noise ratio.
Unfortunately, however, reduction of the number of phase~
encoded signals results in the well-known “truncation
artifact” or “Gibbs oscillations” when the truncated k-space
data are Fourier transformed to reconstruct the image[2,3].

The purpose of this study is to reduce the truncation
artifact and improve the quality of MR images. A number
of methods to reduce the truncation artifact in MR images
have heen proposed in the literature[4-7). Some of the
methods[5] use a version of the Papoulis-Gerchberg algo-
rithm{8,9] and show some good results, but its convergence
may be questionable[10]. Sebastiani and Barone[7] pro-
posed a regularization method in the context of a Bayesian
framework. Their motivation of using a Bayesian approach
was based on the fact that the reconstruction with incom-
plete k-space data is an ill-posed problem. In their model,
the prior information employed was derived from the as-
sumption that the true image could be described by a
piecewise constant model with no ramps or smooth edges.
Although this type of constraint may be useful for reduc-
tion of truncation artifact in the phase direction, the use of
piecewise constant models with symmetric neighbors may
degrade the small details or soft edge regions in the read
direction.

In this paper, we propose an improved Bayesian method
with more elaborate forms of priors than the conventional
piecewise constant priors, which can not only reduce the
truncation artifact in the phase direction, but also retain

the soft edge regions in the read direction.
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Bayesian Models for Magnetic Resonance images

In this paper we model the image on a 2-D finite dis-
crete lattice indexed by (i,j). Uppercase boid quantities de-
note 2-D random fields and corresponding uppercase itali
cized quantities denote random variables. Similarly, lower-
case bold quantities denote 2-D vector fields and corre-
sponding lowercase, italicized quantities denote the elements
of the vector field. For example, Pr(F=1f) denotes the
probability that the random field F takes the value f, and
F, and f, denote elements of F and f at the location (ij),
respectively.

The Bayesian approach consists of two components - the
likelihood and the prior. The likelthood i1s a probabilistic de-
scription of the stochastic processes that relate the original
unknown data F to the observed measurements G. The
prior is a probabilistic description of the assumptions on the
underlying image F. In a Bayesian approach, these two
probabililies are combined to yield ¢ posteriori probability

via Bayes’ Theorem:

Pr(G=g | F=1)Pr(F=f)

PH(G=g) S

Pr(F=f| G=g) =

where Pr(G=g | F=f) is the likelihood probability, Pr(F=
f) the prior probability. Since the elements of g are the ob-
served measurements, Pr(G=g) is simply a number. In the
case of MR images, the observed image g is the magnitude
of the 2-D Fourier transform of the raw data, and the un-
derlying image f corresponds to the magnitude of the trans-
verse magnetization.

For MR images, random errors in the real and imaginary
parts of each pixel are described by independent Gaussian
distributions with identical standard deviation[11]. More
over, pixel intensities in a magnitude image are well ap-
proximated by a Gaussian distribution[12]. Therefore, the
likelihood, Pr(G=g | F=1{), is expressed as a product of
independent Gaussian distributions:

(fij—-‘zgij)z] (2)

Pr(G=g | F=1)=[[exo| -

where ¢ is the standard deviation of the observed magni-
tude image, which can be known by measuring values in a
background region. In fact, the standard deviations of real
and imaginary parts are very close to each other so that a
unique ¢ can be assumed[7]. The likelihood in (2) measures
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the closeness of the solution f to the observed image g.

In our context, priors are probabilistic descriptions of the
spatial character of the underlying image. A popular means
of modeling the prior distribution is to use the Gibbs distri-
bution which is given by

Pr(F = £) = — exp(—AELD), (3)

where A is a constant, Z and E, are the normalizing con-
stant (partition function) and the “energy function” for
smoothness constraints, respectively. Since the Gibbs distri-
bution has a Markovian property, prior distributions mod-
eled as a Gibbs distribution can be specified in terms of the
probability distribution of a pixel conditioned on only its
nearby pixels, rather than through the joint distribution on
random variables associated with the entire object.

In designing priors, it is common to choose the energy
functions which penalize pixel configurations with large in-
tensity gradient within each neighbor. However, it is often
important to model priors that can locate and preserve the
discontinuities that bound smooth regions such as anatomi-
cal regions. Geman and Geman{13] introduced the powerful
idea of including uncbservable “line processes” in the image
model in order to preserve discontinuities in the image. The
line processes are binary variables (0 or 1) that act to sus-
pend smoothness constraints at sites where they are turned
on (/=1). A horizontal line process at location (7,7), /i=1,
indicates a horizontal edge (discontinuity between pixels
along the vertical direction) and a vertical line process,
/%=1, indicates a vertical edge (discontinuity along the hori-
zontal direction).

Versions of the line processes have been proposed for
medical imaging as well as the surface reconstruction prob-
lem in computer vision{13-15). In particular, Blake and
Zisserman[16] proposed mechanical analogs to regularizers
in which a class of “piecewise smoothness” constraints de-
rived from properties of ideal physical materials were used
as models in the associated surface reconstruction problem.
The representative mechanical models are the “weak mem-
brane” and the “weak plate”. These priors are defined over
the pixel intensities and the line processes. The correspond-

ing energies are

ESE D=Z[ 2 GH0-I)+ 7 2pa-1)]

+ag(1h+17) (4)

for weak membrane (WM), and
)
ESED=Z[£2, i+ 2ft, G+ FLGD| =1 ) +aZl,,
(5)

for weak plate (WP). In (4) f. and f, denote the discrete
first order derivatives in the vertical and the horizontal di-
rections, respectively, f.(4,7) and fu(z7) mn (5) the dis
crete second partial derivatives in the vertical and horizon-
tal directions, respectively, and f,(7,7) the second partial
cross derivative. The last term ¢ in both (4) and (5) is a
positive constant. The first and second partial derivative
terms in {4) and (5) are the membrane and the thin plate
[16,17], respectively, which encourage smoothness except
where discontinuities (/=0) occur. One might set /=1 at
all locations to minimize energy, but the last term penalizes
the creation of the discontinuities, charging in amount of «
each discontinuity. Due (o its nature in favoring piecewise
constant reconstrucfions, the WM prior has the unfortunate
effect of turning a ramp into a single step or stepped ter-
races depending on the slope of the ramp region, which is
known as the “gradient limit” effect [16]. The interpreta-
tion of the WP energy in (5) is similar to that of the WM
energy except that the WP encourages smoothness even in
ramplike regions without incurring a penalty. That is, a
“crease”, a discontinuity in first derivative, will turn on the
line process. Thus the discontinuities in the WP correspond
to discontinuities In the intensity gradient in addition to
those in the pixel intensity itself. The details on the proper-
ties of WM and WP and their applications can be found in
[16,157.

Sebastiani and Barone {7] used a version of the WM
prior to reduce truncation artifact in MR images. In their
work the prior model was chosen on the assumption that
the true MR image could be described by a piecewise con-
stant model with no ramps or smooth edges. In fact, the
use of WM that favors piecewise constant reconstructions is
quite useful for suppressing the Gibbs oscillations in the
presence of noise. However, close inspection of a typical
brain MR image and its profile plot shown in Fig. 1 reveals
that many regions in the brain MR image are far from
piecewise constant. Therefore, the use of WM may result in
the generation of spurious edges due to its gradient limit
effect, as well as the loss of the details for soft edges due
to its tendency to favor piecewise flat reconstructions.

Unlike the WM which has the fundamental limitation of
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Fig. 1. A T -weighted brain MR image and a profile plot. (a) A T, -weighted bran MR image (256 x256) reconstructed by the FFT
with 256 phase-encoding steps. (T',=500ms, T ,=13ms, field of view (FOV)=24cm, thickness=5mm, gap=2.5mm). The raw data were

acquired twice and averaged to reduce noise. (b) A profile plot along the vertical line in (a)

turning a ramp into stepped terraces, the WP has no such
ltmit. This is one of the major benefits of using a higher
order scheme [15]. However, care must be taken when the
WP mode! is used to reduce truncation artifact in MR im-
ages, the ringing artifact reveals ramplike regions which
may not be suppressed well by the WP model due to its
tendency to favor piecewise ramplike reconstructions.

MR the direction of the
phase—encoding gradient is usually determined to avoid any

In most clinical Imaging,
possible contamination of diagnostic content due to motion
artifacts since the motion during data acquisition produces
undesirable “ghost” artifacts, which appear as periodic repli-
cations of moving anatomic structures in the phase direc-
tion[ 18]. For brain axial images, in particular, the phase-
encoding gradient is usually in the horizontal direction when
the object is oriented as shown in Fig. 1. This is done
mainly to avoid artifacts due to the eyeball motion and the
blood flow in middle cerebral arteries, which may degrade
the important diagnostic content of the Images when the
phase gradient is in the vertical direction. Therefore, we
argue here that more elaborate forms of priors that can
not only reduce the truncation artifact in the phase direc-
tion, but also preserve ramplike regions in the read direc-
tion.

One possible modification of the prior model for the
above argument may then be a mixture of the WM and
the WP, where the WM is used for reducing the ringing
artifact in the phase direction and the WP for preserving
ramplike structures in the read direction. The corresponding

new prior energy is given by

o &s) ] 2194, H6E, 1998

E(ED =212, GHO=1)+ £ 15)]
+a, 20U +a, DU, (6)

where @, and @, are positive constants that penalize creat-

ing discontinuities in the horizontal and vertical directions,
respectively. Note that, in our new hybrid mode], the hori-
zontal direction is described by the WM and the vertical di-
rection by the WP; the WM suppresses truncation artifact
as well as noise in the horizontal (phase) direction, and the
WP restores ramplike structures in the vertical (read) di-
rection. One could also consider a linear combination of the
WM and the WP by adding (4) and (5). Due to the gradi-
ent limit behavior of the WM, however, the linear combina-

tion turns out to perform poorly in reconstruction problems

[16].
Maximum A Posteriori Estimation

We have shown in the previous section that the Bayesian
approach combines the likelihood and the prior to yield a
posteriori probability via Bayes’ Theorem. Since our new
prior model include the unobservable binary variables 1, we
may rewrite Bayes’ Theorem with the aid of the line pro-

cesses.

Pr(F=f, L=1| G=g)

_Pr(G=g| F=f, L=1) P(F=f, L=1)

Pr(G=g) ’ M
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where 1 is the line process and L is the associated 2-D
random field. One possible approach is then to estimate
both f and | using the well~known maximum a posteriori
(MAP) approach:

(f, Vl) = arg max Pr(F=f, L=1| G=g)

= arg r(rﬁ))([—logpr((}zg | F=f)—logPr(F=f, L=1)]
(8)

From (2), (3), (6), and (8), the MAP estimate becomes
the minimization of the following overall energy function, E

(f, I:
def
E(f, D) = E(f) + AE(f, D)
= %2.<f},-—g,.j>2+/1{2[f,fv(z‘,j>(1—1,,",.)
20‘ LY ii

G-I Sl e, B0 )

where EL(n“:izg(L,—g,,)‘ is the likelihood energy. In (9) A is
identified asﬂ the hyperparameter that weights the prior
respect to the likelihood; as A increases, the degree of the
prior influence increases.

The MAP estimate for this problem is to minimize the
overall energy function in (9). Unfortunately, however, the
overall energy may have numerous stable states, each corre-
sponding to a local minimum of the energy due to the
weak continuity constraints on the prior energy. To over-
come this problem, an optimization method that has an abil-
ity to “jump out” of a local minimum is necessary. Although
the well-known simulated annealing method is guaranteed
to find the global minimum, the amount of computation re-
quired is intractable as reported in[7]. In this work, we use
a deterministic annealing algorithm based on the continua-
tion method[19,15], where the energy function is ap
proached by a sequence of energy functions indexed by a
parameter 8. The sequence is obtained by transformation of
the probability distributions (3) to

P(Y=y|X=x) = exp(-BE (¥)), (10)

Z(x ,/9)
When the probability distributions for the likelihood and the
prior are transformed to the form of (10), the correspond-

ing posterior distribution is given by

Pr(F=f, L=1| G=

Z(g ) exp[-A{E, (f)+AE, (fl)}] an

where Z(g;{) is the partition function parametrized by 4.
Note that the line process can be ehminated from the pos
terior distribution in (11) by integraling out the line proc-
ess and resulting in the “marginal” posterior, which is

given by
Pr(F=f| G=g)=%}PrE(F=f, L=1]| G=g)

I S _
AT exp[-BE, (f)]%exp[ ﬂ/lEP(f,l)],(IZ)

where Zy{g,8) is the partition function for the marginal
posterior, the notation ! (L refers to summation over all
i

possible realizations of the binary field 1, and
Sexpl ~BAE(L)]= uz}exp["— BA(BLsL, G D=1])

G D=1 +a T v, 51|

=[] Stexp[ BASE Gy p—1)+a )]

z.}l

exp[ — BALS (1, NA=1, )+a’v1,,}]
=TN(expl — BAf,, (i, N]+exel - BAa,)
(expl — BAf (i, H]+expl - BAa,])

=exp[§log(exp[— B/lf:v (7, N1+exp(—BAa,])

+ SogCexpl — BAf 1, )1+exol - Bha, ],
Therefore, the marginal posterior is given by

Pr(F=f| G=¢)= mexp[—B{EL(f)+AEMP(f;B)}].

where

E, 658 =~ Slog(exsl - BAF}, i) T+exol — fAa,)

+ Slog(expl ~ BAf 1)1 +expl - Bia, 1)
(13)

The above equation is identified as the marginal prior ener-

gy. Notice that, at large values of 8, if @ > x where x

J. of KOSOMBE : Vol. 19. No. 6. 1998
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refers to either f:v(z',j) or f:(i,j) and o refers to either
a,ora, the first term inside the log( - ) expression domi-
nales and the entire expression reduces to r. If @ < z, the
second term inside the log( - ) expression dominates and
the entire expression reduces to . Inspection reveals that
Euwe(£:8) at large £ is in fact equivalent to Ex(f, 1) in
(6). The details on the continuation method can be found
in[19,15].

Qur task now reduces to finding the minimum at a given
B of the following energy function:

E(f;8) = E,(f) + AE,,(f;8).

For the optimization method, one can use gradient descent
method. However, closed-form solution for f; that minimizes
the above objective function cannot be directly obtained by
setting %jﬂﬂ. as the differentiation results in an expres-
sion transcendental in f, . One possible solution to this prob-
lem is to consider the transcendental term to be a new, al-
beit dependent on fip variable and to descend on each such

variable separately[14]. We define the transcendental terms

as
v def 1
Z; = 2, ..
1+exp[ —BA(Sf, (i) —a,) ]
n def 1

‘zij = 2 .. (14)
L+expl - BA(S,, (i) —a))]

Using the new variables in (14), a corresponding objective
function, M(f,2;8) = o”B(f,z; §), becomes

M2 =530, g, +0% SUFL, Gp-2])

2"} +K(z). (15)

2,. . A
+f G-z ) +a,z,,+e,z,,
where K(z) is the term that does not involve f, The up-
date equation for f; for gradient descent method can now
be obtained by the following equation:

f

R+l

x
is S _ _aM{* 248)
14 ot '

i

where the superscript % denotes the index associated with
the step of the algorithm, and 7 is the step size. The up-
date equation for f; is given by

R+l

f —fikj‘7[(1‘;1—&:‘)—262“(]‘;‘”1"f.'j)(l_zivj)

ij

ol m&t3] Al : #19Y, A65, 1998

~2fij+fi~lj)(1#zil:’)

)

+2(f,

+1J4

_(fif—fij-x)(l—zv

i5-1

P
—(fij—zfiiu"—fnzj')(l_zi»l‘)

7

g2 110 —Zihﬂj)”k‘

where [ - J* denotes the kth step of the algorithm. To com-
plete the definition of the algorithm, we may specify the
two stopping criteria and an annealing schedule. The an-
nealing schedule specifies the rule for changing S at each
epoch. Iterations at a given A are performed until the rela-
tive energy change E;—:,%—', where £ indexes iteration num-
ber within an epoch, is less than a threshold. The entire
simulation is terminated when z <r or z>1 —r, where r
is chosen as a threshold. This is based on the fact that the
approach of z to either 0 or 1 corresponds to the approach
of (13) to (6).

Experimental Results

In order to demonstrate the practical utility of our new
method, we acquired brain MR data from a healthy volun-
teer using a 1.5T GE Signa (Horizon Echo Speed) MRI

system. Pulse sequences used in the experiments were con-
ventional spin-echo sequences with T, = 500ms, T, = 30ms

for Tl—weighted images, TR= 2000ms, TE, = 30ms and TEz
= 80ms for proton-density and T,-weighted images, respec-
tively. Each sequence was employed to collect 10 transverse
slices with the following parameters: thickness=b5mm, gap
=25mm, FOV=21lcm. The orientations for the phase and

read gradients were horizontal and vertical directions,
respectively. In this paper, we report the results from T, -

and T,-weighted images only for one slice.
Figures 2(a) and 3(a) show 256 x256 brain axial in T, -
and T2 -weighted Images, respectively, reconstructed by the

fast Fourier transform (FFT) of 256x256 measured #A-
space data. In order to see the effect of truncation artifact,
we chose a certain number of columns in the k-space data
and filled in the remaining columns with zeros. Figure 2(b)
shows a T, ~weighted 256 x 256 image reconstructed with
only 116 columns of the raw data. Similarly, Fig. 3(b)
shows a T, ~weighted 256256 image reconstructed with
only 96 columns of the raw data. Notice that the Gibbs os-
cillations are clearly visible and the spatial resolution is de-

graded.
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(c)

(d)

Fig. 2. Reduction of truncation artifact in T, -weighted images. {a) AT, -weighted brain MR image(256 x 256) reconstructed with 256 x

256 measured k-space data. (b) Reconstruction by FFT with only 116 columns of k-space data. (c) Reduction of truncation artifact
using the MAP approach with WM prior. (d) Reduction of truncation artifact using the MAP approach with hybrid prior

To test and compare the performance of our new prior
model - the hybrid model - with the WM model, we imple-
mented the proposed method on a SUN UltraSparc 170 1
workstation. A problem with Bayesian methods, including
our own models, is that it is difficult to set hyperparame-
ters (A and ¢ in our case) automatically. While this is an
area of active research, for the present work we set these
values empirically. We first chose the parameter value of A
by considering the degree of smoothness In the reconstruct-
ed images; the A was adjusted to smooth out both the
Gibbs oscillations and the noise. The gradient limit effects
were also considered in finding the value of A for the WM
model. In the experiments, we used one value of A for both
prior models. Having set the A, we adjusted the parameter
a for the WM model empirically to preserve grey/white
matter and tissue boundaries, and used the value of a for
a, in the hybrid model. The parameter @, was also adjusted

to preserve tissue regularity and smooth edges along the

read (vertical) direction. The annealing schedule ran through
22 values with a doubling at each new value of A starting
from £=0.125. With a constant initial estimate for f, the
initial value for the parameter B was chosen to be small
enough to yield a very smooth initial reconstruction. Itera-
tions at a given 4 may be performed until the relative en-
ergy change is less than a threshold. However, in order to
allow a sufficient number of iterations at a given j, we
fixed the iteration number to 50. The entire procedure was
terminated using a threshold value of r = 0.1. The Iinitial
condition for f was a constant intensity of 1.0 and z was
initialized to 0.5. The total computation time for 22 differ-
ent values of A was approximately 2 minutes.

Figure 2(c) shows the result obtained by applying the

weak-membrane model in (4) to the T -weighted image

with truncation artifact in Fig. 2(b). Notice that, although
the truncation artifact i1s reduced remarkably, the result
looks artificially patchy and most of the smooth edges are

J. of KOSOMBE : Vol. 19. No. 6. 1998
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{c)

(&

Fig. 3. Reduction of truncation artifact in 7', -weighted images. (a) A T, -weighted brain MR image(256 x 256) reconstructed with 256 x

256 measured k-space data. (b) Reconstruction by FFT with only 96 columns of k-space data. (c) Reduction of truncation artifact using
the MAP approach with WM prior. (d) Reduction of truncation artifact using the MAP approach with hybrid prior

lost, a result not unexpected since WM tends to favor
piecewise constant reconstructions. The patchiness due to
the gradient limit effects may be reduced by increasing A,
but then a tradeoff results and the details in small areas
are lost due to excessive smoothness. The weak membrane
attempts to create step edges even in the ramp regions in
the read (vertical) direction, resulting in spurious disconti-
nuities. On the other hand, the extension of the WM model
in the read direction to a higher-order model using (6) re-
duces the artifice of WM reconstruction as seen in Fig. 2
(d). Comparison of Fig. 2(d) to (c¢) shows that the hybrid
model reduces truncation artifact as well as noise without
introducing spurious discontinuities in the read direction.
While the visual improvements from Fig. 2(c) to (d) are
not stunning, close inspection reveals that the result ob-
tained by applying the hybrid model, in fact, enhances tis-
sue regularity and boundaries without oversmoothing the

soft edge regions, and captures subtle aspects of the brain

o] 33 =) : A19Y, A6E, 1998

structure in Fig. 2(a). Figures 3(c) and (d) show the
results obtained by applying the weak membrane and the
hybrid models, respectively, to the T, -weighted image with
truncation artifact in Fig. 3(b). Again, the result from the
hybrid model in Fig. 3(d) reduces truncation artifact as
well as noise with no ill effects when compared to the
result from the WM model in Fig. 3(c).

Summary and Conclusion

We have considered a new, improved method for reduc-
tion of truncation artifact in magnetic resonance imaging.
The approach taken in this work is related to other efforts
[7] in which Gibbs priors in the context of a Bayesian
framework were used to reflect the local spatial structure
of true image. Unlike other imaging modalities, however,
the MR images contain ringing artifacts, when reconstruct-
ed with truncated data, which appear in only one of the
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two spatial directions. Therefore, the use of conventional
piecewise-constant models, which apply equally to both di-
rections, can oversmooth important anatomical structure in
the other direction. In contrast, the hybrid model proposed
in this paper is an extension of the weak membrane to a
higher-order model in one direction to preserve ramplike
structures that occur occasionally in that direction. Qur ex-
perimental results show that the hybrid model not only re-
duces the truncation artifact in the phase direction but also
enhances tissue regularity and boundaries without degrading
the smooth edges in the read direction.

Another improvement in this work is to use deterministic
annealing to optimize non-convex objective functions. The
deterministic annealing algorithm used in our experiments
dramatically reduces the computational cost compared to
the well-known simulated annealing and provides good solu-
tions. Therefore, the parallel implementation of deterministic
algorithm, in conjunction with the development of a
systematic way of determining hyperparameters, will make

our method more practical in its clinical applications.
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