• 제목/요약/키워드: Resolution Conversion

Search Result 280, Processing Time 0.03 seconds

Time-optimized Color Conversion based on Multi-mode Chrominance Reconstruction and Operation Rearrangement for JPEG Image Decoding (JPEG 영상 복원을 위한 다중 모드 채도 복원과 연산 재배열 기반의 시간 최적화된 컬러 변환)

  • Kim, Young-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.135-143
    • /
    • 2009
  • Recently, in the mobile device, the increase of the need for encoding and decoding of high-resolution images requires an efficient implementation of the image codec. This paper proposes a time-optimized color conversion method for the JPEG decoder, which reduces the number of calculations in the color conversion by the rearrangement of arithmetic operations being possible due to the linearity of the IDCT and the color conversion matrices and brings down the time complexity of the color conversion itself by the integer mapping replacing floating-point operations to the optimal fixed-point shift and addition operations, eventually reducing the time complexity of the JPEG decoder. And the proposed method compensates a decline of image quality incurred by the quantification error of the operation arrangement and the integer mapping by using the multi-mode chrominance reconstruction. The performance evaluation performed on the development platform of embedded systems showed that, compared to previous color conversion methods, the proposed method greatly reduces the image decoding time, minimizing the distortion of decoded images.

Implementation of Successive Approximate Register typed A/D Converter for a Monitored Battery Voltage Conversion (모니터링된 배터리 전압 변환을 위한 SAR typed A/D 컨버터의 제작)

  • Kim, Seong-Kweon;Lee, Kyung-Ryang;Yeo, Sung-Dae;Hong, Justin S.Y.;Park, Yong-Eun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.2
    • /
    • pp.256-261
    • /
    • 2011
  • In this paper, a design and an implementation of an Analog to Digital (A/D) converter are introduced for the conversion of monitored battery cell voltage in the cell voltage monitoring(CVM) system in battery management system(BMS), which is one of the key devices of ECO hybrid cars. The A/D converter in CVM system required a middle conversion speed and a high resolution, therefore, a successive approximate register(SAR) typed A/D converter with 10 bits resolution has been designed and implemented using Magna 0.6um 40V process. The measurement result which kept ${\pm}1$ LSB accuracy in the full scale range(FSR) of 5V, showed the usefulness of the SAR typed A/D converter in realizing a CVM system.

Frame Interpolation using Bilateral Motion Refinement with Rotation (회전을 고려한 정밀 양방향 움직임 예측 프레임 보간 기법)

  • Lee, Min-Kyu;Park, Hyun-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.5
    • /
    • pp.135-142
    • /
    • 2009
  • Since hold-type display systems have been developed, frame-rate up conversion (FRUC) is an essential technique to improve the temporal resolution in the display. FRUC improves the temporal resolution by interpolating one or multiple intermediate frames between two adjacent frames. In this paper, a new frame-rate up-conversion algorithm based on bilateral motion refinement with rotation is proposed. First, we perform bi-directional motion estimation between adjacent two frames to obtain a motion vector for each block. Then, we apply a modified median filtering to motion vectors for outlier-rejection and motion field smoothing. The filtered motion vectors are updated by the bilateral motion refinement with rotation. After the refined motion vector is obtained, the intermediate frame is generated by applying the overlapped block motion compensation (OBMC). Experimental results show that the proposed algorithm provides a better performance than the previous methods subjectively and objectively.

Real-Time LDR to HDR Conversion Hardware Implementation using Luminance Distribution (영상의 휘도 분포를 이용한 LDR 영상의 실시간 HDR 변환 하드웨어 구현)

  • Lee, Seung-min;Kang, Bong-soon
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.901-906
    • /
    • 2018
  • Due to the development of display technologies for images, the resolution and quality of images are increasing day by day. In accordance with the development of the display technology, researches have been actively conducted on technologies for converting and displaying existing images to higher resolution and quality. Since the results of theses studies are included in the image signal processor, hardware implementation is indispensable. In this paper, we propose a real-time HDR(High Dynamic Range) conversion hardware implementation of LDR(Low Dynamic Range) image using luminance distribution. The proposed method extracts the features of the image using the histogram of the luminance distribution, and extends the luminance and color based on the extracted features. In addition, when the proposed method is designed by hardware IP(Intellectual Property) and its performance is verified, 4K DCI(Digital Cinema Image) can be handled at a rate of 30fps at 265.46MHz.

Improvement in the Quality of Ultrasonographic Images Using Wavelet Conversion and a Boundary Detection Filter (Wavelet 변환과 경계선 검출 필터를 이용한 초음파 영상의 화질증대)

  • Han, Dong-Kyun;Rhim, Jae-Dong;Lee, Jun-Haeng
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.1
    • /
    • pp.23-29
    • /
    • 2008
  • The present study proposed a method that dissolves ultrasonographic images into multiple resolutions using wavelet conversion and a boundary detection filter and improves the quality of ultrasonographic images through boundary detection filtering. In order to reduce noises and strengthen edges, the proposed method adjusted selectivity coefficient by area step by step from a low resolution image obtained from wavelet converted images to a high resolution image and performed edge filtering in consideration of direction. Through this method, we generated a selective low pass filtering effect in areas except edges by decreasing the wavelet coefficient for pixels in spot areas, improved continuity by smoothing edges in the tangential direction, and enhanced contrast by thinning in the normal direction. Through an experiment, we compared the filtering method using a non linear anisotropic expansion model and the filtering method using wavelet contraction structure in single resolution.

  • PDF

Implementation of Digital Frequency Synthesizer for High Speed Frequency Hopping (DDS를 이용한 고속 주파수 Hopping용 디지털 주파수 합성기 구현)

  • Kim Young-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.607-610
    • /
    • 2006
  • The Digital Frequency Synthesizer(DFS) that generates the wideband signal with hish speed frequency hopping rate and high frequency resolution characteristics was implemented in this paper. The DFS was applied as local oscillator for direct frequency conversion IF modules of DVB-RCS, which directly generates the transmission immediate frequency signal by using DDS and wideband PLL technologies. The DDS technology provides high speed frequency hopping rate and high frequency resolution characteristics, which ate also the DVB-RCS requirement. The wideband PLL technology also provides the wideband signal generation, which is a necessity for direct frequency conversion modules. The implemented DFS provide the spurious suppression characteristic of -50 dBc, frequency resolution of 0.233 Hz and frequency hopping rate of 125 ns, respectively. Also the DFS represent the amplitude flatness of 3 dB and less in the pass-band and phase noise characteristic of -75 dBc/Hz at 1 kHz frequency offset.

  • PDF

Design and Implementation of Wideband Digital Frequency Synthesizer for DVB-RCS (DVB-RCS 전송을 위한 광대역 디지털 주파수 합성기 설계 및 구현)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.223-228
    • /
    • 2007
  • The Digital Frequency Synthesizer(DFS) that generates the wideband signal with high speed frequency hopping rate and high frequency resolution characteristics was designed and implemented in this paper The DFS was applied as local oscillator for direct frequency conversion IF modules of DVB-RCS, which directly generates the transmission immediate frequency signal by using DDS and wideband PLL technologies. The DDS technology provides high speed frequency hopping rate and high frequency resolution characteristics, which are also the DVB-RCS requirement. The wideband PLL technology also provides the wideband signal generation, which is a necessity for direct frequency conversion modules. The implemented DFS provides the spurious suppression characteristic of -50 dBc and less, frequency resolution of 0.233 Hz and frequency hopping rate of 125 ns, respectively. Also the DFS represents the amplitude flatness of 3 dB and less in the pass-band, and phase noise characteristic of -75 dBc/Hz at 1 kHz frequency offset.

Design of a CMOS Time to Digital Converter with 25ps Resolution (25ps 해상도를 가진 CMOS Time to Digital 변환기설계)

  • Choi, Jin-Ho;Kang, Jin-Ku
    • Journal of IKEEE
    • /
    • v.8 no.2 s.15
    • /
    • pp.166-171
    • /
    • 2004
  • This paper describes a CMOS time to digital converter (TDC) that measures the interval between two signals and converts to a digital signal. There are various methods to measure the time interval. But several architectures have a limitation in resolution and in conversion time. Moreover, they have complex algorithms. But the proposed TDC circuit has achieved a high resolution (25ps) by using a high-speed digital sampler and simple algorithm. The sampler detects when input signals comes into the TDC and output is coded. The proposed multiphase clock generator was also implemented to achieve 25p resolution.

  • PDF

Molecular Cloning and Functional Expression of esf Gene Encoding Enantioselective Lipase from Serratia marcescens ES-2 for Kinetic Resolution of Optically Active (S)-Flurbiprofen

  • Lee, Kwang-Woo;Bae, Hyun-Ae;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.74-80
    • /
    • 2007
  • An enantioselective lipase gene (esf) for the kinetic resolution of optically active (S)-flurbiprofen was cloned from the new strain Serratia marcescens ES-2. The esf gene was composed of a 1,845-bp open reading frame encoding 614 amino acid residues with a calculated molecular mass of 64,978 Da. The lipase expressed in E. coli was purified by a three-step procedure, and it showed preferential substrate specificity toward the medium-chain-length fatty acids. The esf gene encoding the enantioselective lipase was reintroduced into the parent strain S. marcescens ES-2 for secretory overexpression. The transformant S. marcescens BESF secreted up to 217kU/ml of the enantioselective lipase, about 54-fold more than the parent strain, after supplementing 3.0% Triton X-207. The kinetic resolution of (S)-flurbiprofen was carried out even at an extremely high (R,S)-flurbiprofen ethyl ester [(R,S)-FEE] concentration of 500 mM, 130 kU of the S. marcescens ES-2 lipase per mmol of (R,S)-FEE, and 1,000 mM of succinyl ${\beta}-cyclodextrin$ as the dispenser at $37^{\circ}C$ for 12h, achieving the high enantiomeric excess and conversion yield of 98% and 48%, respectively.

Neural Interface-based Hyper Sensory Device Technology Trend (신경 인터페이스 기반 초감각 디바이스 기술 동향)

  • Kim, H.J.;Byun, C.W.;Kim, S.E.;Lee, J.I.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.6
    • /
    • pp.69-80
    • /
    • 2018
  • Sensory devices have been developed to help people with disabled or weakened sensory functions. Such devices play a role in collecting and transferring data for the five senses (vision, sound, smell, taste, and tactility) and also stimulating nerves. To provide brain or prosthesis devices with more sophisticated senses, hyper sensory devices with a high resolution comparable to or even better than the human system based on individual neuron cells are essential. As for data collecting components, technologies for sensors with higher resolution and sensitivity, and the conversion of algorithms from physical sensing data to human neuron signals, are needed. Converted data can be transferred to neurons that are responsible for human senses through communication with high security, and neural interfaces with high resolution. When communication deals with human data, security is the most important consideration, and intra-body communication is expected to be a candidate with high priority. To generate sophisticated human senses by modulating neurons, neural interfaces should modulate individual neurons, and therefore a high resolution compared to human neurons (~ several tens of um) with a large area covering neuron cells for human senses (~ several tens of mm) should be developed. The technological challenges for developing sensory devices with human and even beyond-human capabilities have been tackled by various research groups, the details of which are described in this paper.