Fig. 1. Flowchart of LDR to HDR conversion. 그림 1. 동적 영역 변환 흐름도
Fig. 2. Result image of proposed LDR to HDR Conversion: (a) LDR image, (b) HDR image. 그림 2. 제안하는 동적 영역 확장 방법의 결과: (a) LDR 영상, (b) 변환된 HDR 영상
Fig. 3. Block diagram of proposed hardware. 그림 3. 제안하는 방법의 하드웨어 블록도
Fig. 4. Histogram of LDR and HDR image: (a) histogram of LDR image, (b) histogram of HDR image. 그림 4. LDR 영상과 HDR영상의 히스토그램: (a) LDR 영상의 히스토그램, (b) HDR 영상의 히스토그램
Fig. 5. Error bound of proposed method. 그림 5. 제안하는 방법의 오차 범위
Fig. 6. Block diagram of proposed IP. 그림 6. 제안하는 방법의 IP 내부 블록도
Table 1. XILINX Synthetic Result. 표 1. 자일링스 합성 툴을 이용한 합성 결과
References
- ITU-R standard, Rec. ITU-R BT.2020, ITU-R, 2014.
- ITU-R standard, Rec. ITU-R BT.2100, ITU-R, 2016.
- SMPTE standard, SMPTE 2036-1, SMPTE, 2009.
- R. Saha, P. P. Banik, and K. D. Kim, "Conversion of LDR image to HDR-like image through high-level synthesis tool for FPGA implementation," 2018 IEEE International Conference on Consumer Electronics (ICCE2018), pp.1-2, 2018. DOI:10.1109/ICCE.2018.8326111
- G. D. Licciardo, C. Cappetta, and L. D. Benedetto, "Design and FPGA implementation of a real-time processor for the HDR conversion of images and videos," 2018 8th Computer Science and Electronic Engineering (CEEC2016), pp. 192-197, 2016. DOI:10.1109/CEEC.2016.7835912
- C. Cappetta, G. D. Licciardo, and L. D. Benedetto, "An FPGA oprimization of a multiple resolution architecture for LDR to HDR image conversion," International Symposium on Signals, Circuits and Systems (ISSCS2017), pp.1-4, 2017. DOI:10.1109/ISSCS.2017.8034902
- T. Ai, M. A. Ali, G. Steffan, K. Ovtcharov, S. Zulfiqar, and S. Mann, "Real-time HDR video imaging on FPGA with compressed comparametric lookup tables," 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE2014), pp.1-6, 2014. DOI:10.1109/CCECE.2014.6901124
- G. Fu, L. Shen, H. Yang, X. Hu, and P. An, "Fast Intra Coding of High Dynamic Range Videos in SHVC," IEEE Signal Processing Letters, vol.25, no.11, pp.1665-1669, 2018. DOI:10.1109/LSP.2018.2867895
- S. Park, S. Yu, M. Kim, K. Park, and J. Paik, "Dual Autoencoder Network for Retinex-Based Low-Light Image Enhancement," IEEE Access, vol.6, pp.22084-22093, 2018. DOI:10.1109/ACCESS.2018.2812809
- S. Mandal, X. L. Dean-Ben, and D. Razansky, "Visual Quality Enhancement in Optoacoustic Tomography Using Active Contour Segmentation Priors," IEEE Transactions on Medical Imaging, vol.35, no.10, pp.2209-2217, 2016. DOI:10.1109/TMI.2016.2553156
- H. Cho, G. J. Kim, K. Jang, S. L, and B. Kang, "Color Image Enhancement Based on Adaptive Nonlinaer Curves of Luminance Features," Journal of Semiconductor Technology and Science, vol.15, no.1, pp.60-67, 2015. DOI:10.5573/JSTS.2015.15.1.060
- S. Lee, D. Kim, and C. Kim, "Ramp Distribution-Based Image Enhancement Techniques for Infrared Images," IEEE Signal Processing Letters, vol.25, no.7, pp.931-935, 2018. DOI:10.1109/LSP.2018.2834429
- K. Park, S. Yu, S. Park, S. Lee, and J. Paik, "An Optimal Low Dynamic Range Image Generation Method Using a Neural Network," IEEE Transactions on Consumer Electronics, vol.64, no.1, pp.69-76, 2018. DOI:10.1109/TCE.2018.2811257
- XILINX, "AMBA AXI4 Interface Protoceol," https://www.xilinx.com/products/intellectual-property/axi.html