• Title/Summary/Keyword: Resistance memory

Search Result 255, Processing Time 0.033 seconds

Design of NAND Flash Translation Layer Based on Valid Page Lookup Table (유효 페이지 색인 테이블을 활용한 NAND Flash Translation Layer 설계)

  • 신정환;이인환
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.15-18
    • /
    • 2003
  • Flash memory becomes more important for its fast access speed, low-power, shock resistance and nonvolatile storage. But its native restrictions that have limited 1ifetime, inability of update in place, different size unit of read/write and erase operations need to managed by FTL(Flash Translation Layer). FTL has to control the wear-leveling, address mapping, bad block management of flash memory. In this paper, we focuses on the fast access to address mapping table and proposed the way of faster valid page search in the flash memory using the VPLT(Valid Page Lookup Table). This method is expected to decrease the frequency of access of flash memory that have an significant effect on performance of read and block-transfer operations. For the validations, we implemented the FTL based on Windows CE platform and obtained an improved result.

  • PDF

Controllable Growth of Single Layer MoS2 and Resistance Switching Effect in Polymer/MoS2 Structure

  • Park, Sung Jae;Chu, Dongil;Kim, Eun Kyu
    • Applied Science and Convergence Technology
    • /
    • v.26 no.5
    • /
    • pp.129-132
    • /
    • 2017
  • We report a chemical vapor deposition approach and optimized growth condition to the synthesis of single layer molybdenum disulfide ($MoS_2$). Obtaining large grain size with continuous $MoS_2$ atomically thin films is highly responsible to the growth distance between molybdenum trioxide source and receiving silicon substrate. Experimental results indicate that triangular shape $MoS_2$ grain size could be enlarged up to > 80um with the precisely controlled the source-to-substrate distance under 7.5 mm. Furthermore, we demonstrate fabrication of a memory device by employing poly(methyl methacrylate) (PMMA) as insulating layer. The fabricated devices have a PMMA-$MoS_2$/metal configuration and exhibit a bistable resistance switching behavior with high/low-current ratio around $10^3$.

Anticipatory I/O Management for Clustered Flash Translation Layer in NAND Flash Memory

  • Park, Kwang-Hee;Yang, Jun-Sik;Chang, Joon-Hyuk;Kim, Deok-Hwan
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.790-798
    • /
    • 2008
  • Recently, NAND flash memory has emerged as a next generation storage device because it has several advantages, such as low power consumption, shock resistance, and so on. However, it is necessary to use a flash translation layer (FTL) to intermediate between NAND flash memory and conventional file systems because of the unique hardware characteristics of flash memory. This paper proposes a new clustered FTL (CFTL) that uses clustered hash tables and a two-level software cache technique. The CFTL can anticipate consecutive addresses from the host because the clustered hash table uses the locality of reference in a large address space. It also adaptively switches logical addresses to physical addresses in the flash memory by using block mapping, page mapping, and a two-level software cache technique. Furthermore, anticipatory I/O management using continuity counters and a prefetch scheme enables fast address translation. Experimental results show that the proposed address translation mechanism for CFTL provides better performance in address translation and memory space usage than the well-known NAND FTL (NFTL) and adaptive FTL (AFTL).

  • PDF

Fully Room Temperature fabricated $TaO_x$ Thin Film for Non-volatile Memory

  • Choi, Sun-Young;Kim, Sang-Sig;Lee, Jeon-Kook
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.28.2-28.2
    • /
    • 2011
  • Resistance random access memory (ReRAM) is a promising candidate for next-generation nonvolatile memory because of its advantageous qualities such as simple structure, superior scalability, fast switching speed, low-power operation, and nondestructive readout. We investigated the resistive switching behavior of tantalum oxide that has been widely used in dynamic random access memories (DRAM) in the present semiconductor industry. As a result, it possesses full compatibility with the entrenched complementary metal-oxide-semiconductor processes. According to previous studies, TiN is a good oxygen reservoir. The TiN top electrode possesses the specific properties to control and modulate oxygen ion reproductively, which results in excellent resistive switching characteristics. This study presents fully room temperature fabricated the TiN/$TaO_x$/Pt devices and their electrical properties for nonvolatile memory application. In addition, we investigated the TiN electrode dependence of the electrical properties in $TaO_x$ memory devices. The devices exhibited a low operation voltage of 0.6 V as well as good endurance up to $10^5$ cycles. Moreover, the benefits of high devise yield multilevel storage possibility make them promising in the next generation nonvolatile memory applications.

  • PDF

형상기억합금의 특성 및 응용

  • Lee, In;Yang, Seung-Man
    • Journal of the KSME
    • /
    • v.44 no.6
    • /
    • pp.34-39
    • /
    • 2004
  • 형상기억합금(SMA : Shape Memory Alloy)은 일반적인 금속이나 합금에서는 찾아볼 수 없는 형상기억효과(shape memory effect)와 초탄성 (superelasticity) 거동을 보이고 있다. 이러한 특성은 1951년에 금-카드뮴(Au-Cd) 합금에서 처음으로 발견되었으며, 1963년에 미국 해군병기연구소(Naval Ordnance Laboratory)에서 니켈-티타늄 (Ni-Ti) 합금에서 형상기억효과를 발견한 후로 널리 상용화되었다. 니티놀(nitinol)이라고 불려지는 니켈-티타늄 계열의 형상기억합금은 단위 부피당 많은 에너지를 낼 수 있고, 내 부식성(corrosion resistance)과 생화학적 적합성(bio-compatibility)이 뛰어나다. 또한 100,000사이클 이상의 긴 사용수명을 갖기 때문에 작동기(actuator)로서 우수한 특징을 갖는다. (중략)

  • PDF

Electrical Properties of Phase Change Memory Device with Novel GST/TiAlN structure (Novel GST/TiAlN 구조를 갖는 상변화 메모리 소자의 전기적 특성)

  • Lee, Nam-Yeal;Choi, Kyu-Jeong;Yoon, Sung-Min;Ryu, Sang-Ouk;Park, Young-Sam;Lee, Seung-Yun;Yu, Byoung-Gon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.118-119
    • /
    • 2005
  • PRAM (Phase Change Random Access Memory) is well known to use reversible phase transition between amorphous (high resistance) and crystalline (low resistance) states of chalcogenide thin film by electrical Joule heating. In this paper, we introduce a stack-type PRAM device with a novel GST/TiAlN structures (GST and a heating layer of TiAlN), and report its electrical switching properties. XRD analysis result of GST thin film indicates that the crystallization of the GST film start at about $200^{\circ}C$. Electrical property results such as I-V & R-V show that the phase change switching operation between set and reset states is observed, as various input electrical sources are applied.

  • PDF

Effect of Annealing Temperature on the Operation of Phase-Change Memory (상변화 메모리 소자 동작 특성에 미치는 열처리 온도 효과)

  • Lee, Seung-Yun;Park, Young-Sam
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.155-160
    • /
    • 2010
  • The effect of process temperature of a final annealing step in the fabrication of phase change memory (PCM) devices was investigated. Discrete PCM devices employing $Ge_2Sb_2Te_5$ (GST) films as an active element were made in a pore-style configuration, and they were annealed at various temperatures ranging from 160 to $300^{\circ}C$. The behaviors of cell resistance change from SET resistance to RESET resistance were totally different according to the annealing temperatures. There was a critical annealing temperature for the fabrication of normal PCM devices and abnormal operations were observed in some devices annealed at temperatures lower or higher than the critical temperature. Those influences of annealing temperature seem closely related to the thermal stability of a top electrode/GST/heating layer multilayer structure in the PCM devices.

The Effects of Mn-doping and Electrode Material on the Resistive Switching Characteristics of ZnOxS1-x Thin Films on Plastic

  • Han, Yong;Cho, Kyoungah;Park, Sukhyung;Kim, Sangsig
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.1
    • /
    • pp.24-27
    • /
    • 2014
  • In this study, the effects of Mn-doping and the electrode materials on the memory characteristics of $ZnO_xS_{1-x}$ resistive random access memory (ReRAM) devices on plastic are investigated. Compared with the undoped Al/$ZnO_xS_{1-x}$/Au and Al/$ZnO_xS_{1-x}$/Cu devices, the Mn-doped ones show a relatively higher ratio of the high resistance state (HRS) to low resistance state (LRS), and narrower resistance distributions in both states. For the $ZnO_xS_{1-x}$ devices with bottom electrodes of Cu, more stable conducting filament paths are formed near these electrodes, due to the relatively higher affinity of copper to sulfur, compared with the devices with bottom electrodes of Au, so that the distributions of the set and reset voltages get narrower. For the Al/$ZnO_xS_{1-x}$/Cu device, the ratio of the HRS to LRS is above $10^6$, and the memory characteristics are maintained for $10^4$ sec, which values are comparable to those of ReRAM devices on Si or glass substrates.

Electrical Resistance Characteristic of Ag/As-Ge-Se-S Thin film with Laser Irradiation (레이저 조사에 의한 Ag/As-Ge-Se-S 박막의 전기적 저항특성)

  • Koo, Yong-Woon;Kim, Jin-Hong;Koo, Sang-Mo;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.110-111
    • /
    • 2006
  • In this paper, we investigated resistance characteristic of chalcogenide material for next generation ReRAM nonvolatile memory device with laser irradiation. A AES is used to test Ag doping ratio into a As-Ge-Se-S thin film. A sample resistance was observed in real time with He-Ne laser(632.8nm). As a result, resistance of thermal treated As-Ge-Se-S thin film was $500{\Omega}$ which is smaller than initial $1.3M{\Omega}$. A resistance of non-treated Ag/As-Ge-Se-S thin film was $200{\Omega}$ which is lower than $35M{\Omega}$.

  • PDF

A LSTM-based method for intelligent prediction on mechanical response of precast nodular piles

  • Chen, Xiao-Xiao;Zhan, Chang-Sheng;Lu, Sheng-Liang
    • Smart Structures and Systems
    • /
    • v.30 no.2
    • /
    • pp.209-219
    • /
    • 2022
  • The determination for bearing capacity of precast nodular piles is conventionally time-consuming and high-cost by using numerous experiments and empirical methods. This study proposes an intelligent method to evaluate the bearing capacity and shaft resistance of the nodular piles with high efficiency based on long short-term memory (LSTM) approach. A series of field tests are first designed to measure the axial force, shaft resistance and displacement of the combined nodular piles under different loadings, in comparison with the single pre-stressed high-strength concrete piles. The test results confirm that the combined nodular piles could provide larger ultimate bearing capacity (more than 100%) than the single pre-stressed high-strength concrete piles. Both the LSTM-based method and empirical methods are used to calculate the shift resistance of the combined nodular piles. The results show that the LSTM-based method has a high-precision estimation on shaft resistance, not only for the ultimate load but also for the working load.