• Title/Summary/Keyword: Resin monomer

Search Result 154, Processing Time 0.028 seconds

Fabrication and Mechanical properties of Steel Fiber Reinforced Polyester Resin Composites Utilizing by-Products (Fly Ash) (산업부산물을 이용한 강섬유보강 폴리에스터 수지복합체의 제조 및 역학적 특성)

  • 박승범;윤의식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.35-40
    • /
    • 1992
  • Results of an experimental study on the manufacture, the workability and mechanical properties of steel fiber reinforced polyester resin composites utilizing industrial waste products are presented in this paper. The fly ash polyester resin composites using steel fiber, fly ash and calcium carbonic acid (CaCo3), unsaturated polyester resin, styrene monomer, cobalt octate and methyl ethyl ketone peroxide, fine and coarse aggregates are prepared with various filler~binder rations, binder rates and mixing conditions. As a test results, the workability of steel fiber reinforced polyester resin composites are considerably dropped with increasing fly ash-binder ratio and steel fiber volume. And compressive, flexural strength and bending toughness of the composites are remarkably improved with augmenting fiber contents.

  • PDF

EFFECT OF A NEW RESIN MONOMER ON THE MICROLEAKAGE OF COMPOSITE RESIN RESTORATIONS (새로운 레진 단량체가 복합레진수복물의 미세변연누출에 미치는 영향)

  • Bae, J.H.;Kim, Y.K.;Yoon, P.Y.;Lee, M.A.;Cho, B.H.
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.5
    • /
    • pp.469-475
    • /
    • 2007
  • The purpose of this study was to evaluate the effect of a new resin monomer on the microleakage of composite resin restorations. By adding new methoxylated Bis-GMA (Bis-M-GMA, 2,2-bis[4-(2-methoxy-3-methacryloyloxy propoxy) phenyl] propane) having low viscosity, the content of TEGDMA which has adverse effects on polymerization shrinkage might be decreased. As a result, microleakage might be improved. $2\;mm\;{\times}\;2\;mm\;{\times}\;2\;mm$ cavities with occlusal margins in enamel and gingival margins in dentin were prepared on buccal and lingual surfaces of 40 extracted human premolars. Prepared teeth were randomly divided into four groups and restored with Clearfil SE bond (Kuraray, Japan) and one of experimental composite resins; EX1, Experimental composite resin1 (Bis-M-GMA/TEGDMA = 95/5 wt%, 40 mm nanofillers); EX2, Experimental composite resin2 (Bis-M-GMA/TEGDMA = 95/5 wt%, 20 mm nanofillers); EX3, Experimental composite resin3 (Bis-GMA/TEGDMA = 70/30 wt%, 40 nm nanofillers); and Filtek Z250 (3M ESPE, USA) was filed as a control group. The restored teeth were thermocycled, and immersed in 2% methylene blue solution for 24 hours. The teeth were sectioned buccolingually with a low speed diamond saw and evaluated for microleakage under stereomicroscope. The data were statistically analyzed by Pearson Chi-Square test and Fisher Exact test (p = 0.05). The microleakage scores seen at the enamel margin were significantly lower than those of dentin margin (p = 0.007). There were no significant differences among the composite resins in the microleakage scores within each margin (p > 0.05). Bis-M-GMA, a new resin monomer having low viscosity, might in part replace high viscous Bis-CMA and might improve the quality of composite resin.

Strength Characteristics of Various Polymer Concrete (각종 폴리머 콘크리트의 강도특성)

  • 연규석;허남석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.1-4
    • /
    • 1990
  • This study was conducted to evaluate strength characteristics of various polymer concretes which were produced using materials available in Korea. Compressive strength, splitting tensile strength and flexural strength were evaluated in this study. Eight different polymer binders were used, including two types of epoxy resin, five types of unsaturated polyester resin, and a type of MMA monomer. The results of this study showed that the product made from PC-100 of SH company was the best performing concrete. However, since this result was based on strength and economics point of view, further study has to be conducted for comprehensive analysis.

  • PDF

A Study on the Linear Distoration of Self-Curing Resin by Various Curing Technics (다양한 온성방법에 따른 즉시 중합 수지의 선변형에 관한 연구)

  • Lee, Do-Kyung
    • Journal of Technologic Dentistry
    • /
    • v.14 no.1
    • /
    • pp.91-94
    • /
    • 1992
  • This study was made to change dimension of self-curing resin by various curing technics. Specimens were fabricated 45 by 7 curing method. Six measurements(distances AB,BC,CD, AD, AC, and BD) were made of mold section and recorded with micrometer(1/20 mm). The results of the experiment were as follows : 1. The air pressure cured specimens exhibited more distoration than the bench-cured, watercured, and monomer atmosphere-cured specimens(P < 0.05). 2. The water pressure cured specimens exhibited more distoration sphere-cured specimens (P < 0.(15).

  • PDF

The effect of retention grooves in Acrylic resin tooth denture base bond (합성수지 인공치와 열중합의치상 Resin의 결합시 인공치에 형성하는 유지공의 효과에 관한 연구)

  • Kim, Bu-Sob
    • Journal of Technologic Dentistry
    • /
    • v.9 no.1
    • /
    • pp.51-55
    • /
    • 1987
  • One of the primary advantages of acrylic resin teeth is their ability to bond chemically to the denture base resins. Fracture od acrylic resin teeth from a maxillary denture, however, is not uncommon. Bonding failures have been attributed to faulty boil-out procedures that fail to eliminate all traces of wax from the ridge lap surfaces of the teeth and to contamination of the ridge lap surface by careless application of tinfoil substitute. Attempts to increase the strength of the bond between acrylic resin teeth and heat-cured denture base resin include grinding the glossy ridge lap surface (in fluid system), painting the ridgelap surface of the teeth with monomer-polymer solution, and cutting retention grooves in the ridge lap surface of the teeth. This latter method has been tested by applying a tensile force in a labial direction to the incisal part of the lingual surface of the acrylic resin teeth. A progressive shear compressive load was applied at an angle to the lingual surface of acrylic resin teeth bonded to denture base acrylic resin. No statistically singificant advantage was derived by preparing retention grooves of different shapes in the ridgelap surface of the denture teeth.

  • PDF

EFFECT OF CONTAMINANTS ON THE PUTTY-WASH BOND STRENGTH IN TWO-STEP RELINE TECHNIQUE USING VINYL POLYSILOXANE IMPRESSION MATERIALS (Vinyl Polysiloxane 인상재를 이용한 이회 인상법에서 contaminants가 putty-wash 결합력에 미치는 영향)

  • Kim, Mu-Hyon;Jeong, Chang-Mo;Jeon, Young-Chan;Hwang, Hie-Seong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.2
    • /
    • pp.266-276
    • /
    • 1996
  • Numerous factors are known to affect the accuracy of elastomeric impression materials. Factor often overlooked is the quality of the bond between putty and wash during corrective reline impression technique. The putty-wash bond strength must be strong enough to over-come the local stress at putty-wash interface. It is not always possible to avoid saliva contamination in making corrective wash impres-sion. And putty preliminary impression material con be used as a template for provisional restoration. Human saliva and the residual monomer of autopolymerizing acrylic resin are thought to affect the bond strength and the failure type. This study examined the effect of contaminants like human saliva, and residual resin monomer on the putty-wash bond strength and the effectiveness of treatment. 1. Of the tested three brands of Vinyl Polysiloxane impession meterial, Express Exhibited the greatest bond strength followed by Eamix and Perfect showed the lowest putty-wah bond strength. 2. Coating the putty substrates with human saliva did not produce decreased failure load in all the breands of Vinyl Polysiloxane impression meterail. 3. Of the three brands of VPS impression material that were exposed to methhylmethacry-late resin(Jet), only the putty-wash bond strength of the Perfect group diminished signifi-cantly. Moreover, all the specimens from group C of Perfect exhibited adhesive failure. 4. Exposing the substrates to ethylmethacrylate resin(SNAP. diminished the putty-wash bond strength significantly. With Perfect and Examix, failure occurred cohesively through the light-body, whereas with Express, failure occurred adhesive-cohesively. 5. Removing approximately 1mm thickness of the contaminated putty interface was the most effective treatment in countering the undesirable effect caused by residual resin monomer. The putty-wash bond strength of the groups that were treated with 1mm even putty reduction was not significantly different from those of control groups. With Perfect and Examix, cleaning the specimens with gauze soaked in 70% isopropyl alcohol increased the putty-wash bond strength, but was not as effective as 1mm even reduction of contaminated putty substrates. With Express, 70% isoproryl alcohol treatment exhibi0ted comparable putty-wash bond strength to that of control group.

  • PDF

A STUDY OF PHYSICAL PROPERTIES OF COMPOSITE RESIN POLYMERIZATION WITH ARGON LASER (아르곤 레이저에 의한 복합레진의 중합시 물성 변화에 관한 연구)

  • Kim, Deok;Min, Byung-Soon;Choi, Ho-Young;Park, Sang-Jin;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.1-19
    • /
    • 1998
  • After polymerizing composite resin with argon laser and visible light, four test, to be concretely, measurement of compressive strength using Instron testing machine, surface microhardness using Rockwell hardness tester, quantitative analysis of residual monomer using HPLC and analysis of degree of conversion using FTIR, were accomplished. Test groups were a sort of specimen with 3mm diameter, 4mm thickness for measuring compressive strength, two sort of specimen with 7mm diameter, 2mm and 3mm thickness for measuring surface microhardness, quantitative analysing of residual monomer after curing and measuring the degree of conversion, each were divided by six groups according to the condition of light exposure. In case of argon laser, in 1.0W and 0.5W output, the exposure time for specimen were 5 sec, 10 sec respectiyely. In case of visible light, the exposure time for specimen were 20 sec, 40 sec respectively. The test were accomplished and following results were obtained. 1. Compressive strength of composite resin was the highest in the group of 1 W output, exposing for 10 sec with argon laser, followed by the group of 0.5W, exposing for 10 sec with argon laser, the group of exposing for 40 sec with visible light. But there were statistically no significant difference between these three groups(p>0.05). 2. Surface microhardness of composite resin wasn't significantly affected by light curing conditions. 3. BIS-GMA within residual monomer was least detected in the group of exposing for 40 sec. TEGDMA was least detected in the group of 1 W output, exposing for 10 sec with argon laseboth 2mm and 3mm thickness specimen. 4. The degree of conversion of all groups in the 2mm thickness specimen were more than 50%, similar to each other but in the group of 1W, exposing 10 sec with argon laser the degree of conversion was highest in the 3mm thickness specimen. 5. Argon laser could make composite resin to has similar properties with 25% lesser exposure time than visible light.

  • PDF

Preparation and Physical Properties of Acrylic Resin Coatings Containing Tertiary Amine and Epoxysilane Curing Agent (3급아민기 함유 아크릴수지 합성과 에폭시실란 경화형 도료의 도막 물성)

  • Kim, Seong-Kil;Park, Hyong-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.164-165
    • /
    • 2021
  • To prepare the good-adherent and weather-resistant acrylic resin coatings, acrylic resin was prepared by a radical polymerization. Glass transition temperature(Tg) of the acrylic copolymer was fixed at 30℃ and the contents of tertiary amine monomer(DMAEMA) was varied to be 5, 10, 15, 20 wt% respectively. γ-Glycidoxypropyltrimethoxysilane(GPTMS) containing epoxy group was used for curing agents and di-n-butyltindilaurate(DBTDL) was used for drying accelerator. The equivalent ratio of amine to epoxy was 1:1. The prepared coatings exhibited excellent adhesion to various substrates, and various physical properties of the coatings were satisfactory. The gloss retention and color difference were improved at low tertiary amine concentration. The coatings containing 10wt% tertiary amine concentration have especially good weather resistant properties.

  • PDF

Preparation of Mg(OH)2-Melamine Core-Shell Particle and Its Flame Retardant Property (멜라민이 코팅된 수산화마그네슘 입자의 제조와 그 복합입자의 난연특성)

  • Lim, Hyung-Mi;Yoon, Joon-Ho;Jeong, Sang-Ok;Lee, Dong-Jin;Lee, Seung-Ho
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.691-698
    • /
    • 2010
  • Magnesium hydroxide-melamine core-shell particles were prepared through the coating of melamine monomer on the surface of magnesium hydroxide in the presence of phosphoric acid. The melamine monomer was dissolved in hot water but recrystallized on the surface of magnesium hydroxide by quenching to room temperature in the presence of phosphoric acid. The core-shell particle was applied to low-density polyethylene/ ethylene vinyl acetate (LDPE/EVA) resin by melt-compounding at $180^{\circ}C$ as flame retardant. The effect of magnesium hydroxide and melamine content has been studied on the flame retardancy of the core-shell particles in LDPE/EVA resin according to the preparation process and purity of magnesium hydroxide. Magnesium hydroxide prepared with sodium hydroxide rather than with ammonia solution revealed higher flame retardancy in core-shell particles with LDPE/EVA resin. At 50 wt% loading of flame retardant, core-shell particles revealed higher flame retardancy compared to that of the exclusive magnesium hydroxide in LDPE/EVA composite, and it was possible to satisfy the V0 grade in the UL-94 vertical test. The synergistic flame retardant effect of magnesium hydroxide and melamine core-shell particles was explained as being due to the endothermic decomposition of magnesium hydroxide and melamine, which was followed by the evolution of water from the magnesium hydroxide and porous char formation due to reactive nitrogen compounds, and carbon dioxide generated from melamine.

Effect of Polytriazolesulfone Addition on Fracture Toughness of DGEBA Epoxy Resin (DGEBA에 대한 폴리트리아졸술폰의 강인화 효과 연구)

  • Kwon, Woong;Lee, Minkyu;Han, Minwoo;Jeong, Euigyung
    • Textile Coloration and Finishing
    • /
    • v.31 no.2
    • /
    • pp.118-126
    • /
    • 2019
  • This study aims to investigate the effect of polytriazolesulfone(PTS) addition on fracture toughness of diglycidyl ether of bisphenol A(DGEBA) and 4,4'-diaminodiphenylsulfone(DDS). Various amounts of PTS were added to DGEBA/4,4'-DDS in diazide and dialkyne monomer forms and polymerized during the epoxy curing process. Fracture toughness(K1C), tensile properties and thermal stability of the PTS added epoxy resin were evaluated and compared with those of PES, the conventional high Tg toughening agent, added epoxy resin. Fracture toughness of the PTS added epoxy resin was dramatically improved up to 133%, as the amount of PTS added increased, whereas that of the PES added epoxy resin was improved by only 67%. The tensile strength of PTS added DGEBA/4,4'-DDS was similar to the epoxy resin without PTS and tensile modulus was improved by 20%. And thermal stability of the PTS added epoxy resin was improved up to 14%. Therefore, PTS addition to DGEBA/4,4'-DDS, as a toughening agent, is very effective way to improve its fracture toughness without any lowering in other properties.