• Title/Summary/Keyword: Required thrust

Search Result 224, Processing Time 0.022 seconds

A Review on Major Foreign Research Trend of Monomethylhydrazine Reaction for Space Propulsion Part II : Chemical Reaction of Monomethylhydrazine-Dinitrogen Tetroxide (우주추진용 모노메틸하이드라진 반응에 대한 주요 해외연구 동향 조사 Part II : 모노메틸하이드라진-사산화이질소의 화학반응)

  • Jang, Yohan;Lee, Kyun Ho
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.74-81
    • /
    • 2016
  • Space propulsion system produces required thrust for satellites and space launch vehicles by using chemical reactions of a liquid fuel and a liquid oxidizer typically. Among several liquid propellants, the monomethylhydrazine-dinitrogen tetroxide is expecially preferred for a GEO satellite propellants due to their better storability in liquid phase during a long mission life under a freezing space environment. Recently, a development of the monomethylhydrazine-dinitrogen tetroxide bipropellant system becomes important as the national space program requires the heavier and the more efficient space system. Thus, the objective of the present study is to review a foreign research trend of a chemical reaction between the monomethyhydrazine fuel and the dinitrogen tetroxide oxidizer to understand a fundamental basis of their characteristics to prepare for domestic development in future.

Inertia Force Problem and Nozzle Contact Mechanism on Linear Motor Drive Injection Molding Machine (리니어모터식 사출성형기의 반력문제 및 노즐터치기구)

  • Bang, Yeong-Bong;Yun, Deung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.171-177
    • /
    • 2002
  • This paper presents the inertial force problem of ultrahigh-speed injection molding machine using linear motors, and presents its solutions. To make very thin products by injection molding, very high injection speed is required, and linear motors are used for this purpose. But direct drive by linear motors may cause brief nozzle separation from the sprue bushing because of the inertia force as large as the total output thrust of the linear motors, and this momentary separation can cause molten plastic leakage. In this paper, two solutions are proposed for this inertia force problem. One is the mechanical cancellation of the inertia force, and the other to increase the nozzle contact force. With the latter solution, the stationary platen bending worsens, so a new nozzle contact mechanism is also proposed, which can prevent the stationary platen bending.

Hydraulic Force and Impeller Evaluation of a Centrifugal Heart Pump

  • Timms, D.L;Tan, A.C.C;Pearcy, M-J;Mcneil, K;Galbraith, A
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.376-381
    • /
    • 2004
  • A rig was constructed to test the performance characteristics and compare the hydraulic forces exerted on a centrifugal type artificial heart impeller. A conventional shaft. seal and bearing system. while driven by a small electric motor. supported the impeller which was separated from the pump casing by a six degree of freedom force transducer (JR3 Ine). Radial (x. y) and axial (z) hydraulic forces were recorded and compared. At physiological operating conditions. the results indicate that the double entry/exit centrifugal pump encounters a smaller radial force and significantly reduced axial thrust. These experimental results are valuable in the design of a magnetic bearing system to suspend the impeller of a centrifugal artificial heart pump. This experimental technique may also be applied to evaluate the required capacity and predict the lifetime of contact bearings in marine pumps.

AERODYNAMIC ANALYSIS AND OPTIMIZATION STUDY OF THE HELICOPTER ROTOR BLADE IN HOVERING FLIGHT (정지비행시 헬리콥터 로터 블레이드의 공력해석 및 최적화)

  • Je, S.E.;Jung, H.J.;Kim, D.J.;Joh, C.Y.;Myong, R.S.;Park, C.W.;Cho, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.125-129
    • /
    • 2007
  • In this paper a method for the design optimization for helicopter rotor blade in hover is studied Numerical analysis of aerodynamic characteristics of the flow around a rotor blade is analysed by usign panel method and CFD code based on Navier-Stokes equation. The result is validated by comparing with existing experimental result. Optimization methods RSM(Response Surface Method) and DOE(Design of Experiments) are applied in combination. The object functions are power, twist angle, taper ratio, and thrust. The optimized result showed a decrease of 17% of the power required.

  • PDF

Design of a Small-scaled Superconducting LSM for the Very High Speed Railway Vehicle (레일방식 초고속열차 추진용 축소 초전도 LSM 설계 연구)

  • Park, Chan-Bae;Kim, Jae-Hee;Lss, Byung-Song
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1602-1607
    • /
    • 2014
  • This paper deals with the design and property analysis of 7kW-class small-scaled superconducting Linear Synchronous Motor (LSM) and testing equipment for a number of performance pre-tests prior to the development of coreless-type superconducting LSM suitable for 600km/h very high speed train. First, the basic design and property analysis are conducted before developing a small-scaled superconducting LSM model with 2-pole superconducting electromagnets, and additionally the cost-down design of the superconducting electromagnets is conducted to use less high-Tc superconducting wire. Finally, the superconducting magnet coil span is selected at 120mm, and input ground armature current of 670Aturns is required to produce 44.7N of thrust based on research findings.

The Static Structural Design and Test of High Speed Propeller Blade (고속 프로펠러 블레이드 정적 구조 설계 및 시험)

  • Park, Hyun-Bum;Choi, Won
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.4
    • /
    • pp.11-18
    • /
    • 2014
  • The recent high speed propeller with blade sweep is required to have high strength to get the thrust to fly at high speed. The high stiffness and strength carbon/epoxy composite material is used for the major structure and skin-spar-foam sandwich structural type is adopted for advantage in terms of the blade weight. As a design procedure for the present study, the structural design load is estimated through investigation on aerodynamic load and then flanges of spars from major bending loads and the skin from shear loads are sized using the netting rule and Rule of Mixture. In order to investigate the structural safety and stability, stress analysis is performed by finite element analysis code MSC. NASTRAN. It is found that current methodology of composite structure design is a valid method through the static structural test of prototype blade.

Measurement of Dynamic Characteristics of an Inducer in Cavitating Conditions

  • Ashida, Takuya;Yamamoto, Keita;Yonezawa, Koichi;Horiguchi, Hironori;Kawata, Yutaka;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.3
    • /
    • pp.307-317
    • /
    • 2017
  • In liquid-propellant rockets, POGO instability can occur, in which a fluctuation of propellant supply to the engine, a thrust fluctuation, and a structural vibration are coupled. For the prediction of this instability, it is required to provide dynamic characteristics of the pump represented as the transfer matrix correlating the upstream and downstream pressure and flow rate fluctuations. In the present study, the flow rate fluctuation is evaluated from the fluctuation of pressure difference at the different locations assuming that the fluctuation is caused by the inertia of the flow rate fluctuation. The experiments were performed in some flow conditions, and it was shown that the tendencies of dynamic characteristics are related to excitation frequencies, cavitation numbers and flow rate coefficients.

Status of the Development of Turbopumps in Korea (국내 터보펌프 개발 현황)

  • Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.5
    • /
    • pp.73-78
    • /
    • 2008
  • The development of turbopump in Korea has been practically started from 1999. Recently, the turbopump for a LRE with 30-ton level thrust has been successfully developed, which is able to work for all the required LRE regimes. This success is considered as a breakthrough in development of LRE because the turbopump, a core component of LREs, has been considered as a critical barrier in domestic technology point of view. In this paper, status of the turbopump development in Korea is provided and some suggestions are made for the prospective future.

Bearingless Rotor Hub Composite Component Fatigue Analysis of Utility Helicopter to perform the Basic Mission (기본임무를 수행하는 기동헬기에 적용될 무베어링 허브 복합재 구성품 피로수명 해석)

  • Kim, Taejoo;Kee, Youngjoong;Kim, Deog-kwan;Kim, Seung-ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.383-389
    • /
    • 2013
  • Rotor system is a very important part which produces lift, thrust and control force in helicopter. Component of rotor system must endure various flight load for the required life. In helicopter rotor system, bearingless rotor system is the highest technology rotor system compare with articulated and hingeless rotor system. Baaringless rotor system is not include mechanical flap hinge, lag hinge and pitch bearing. Bearingless rotor component flexbeam which made by composite material has conduct hinge and bearing role instead of mechanical flap hinge, lag hinge and pitch bearing. These characteristics has less part number and lass weight than others. In this paper, conduct safe life analysis of bearingless composite component flexbeam and torque tube applying to utility helicopter load condition.

  • PDF

Some case studies of hydrodynamic bearings in power plants in Japan

  • M Tanaka
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.1-11
    • /
    • 2003
  • The service reliability of power plants strongly depends on the excellent performance and integrity of hydrodynamic bearings. Consequently, the bearings must be properly designed so as to control vibration amplitudes of rotor due to mass unbalance in passing critical speeds and also suppress self-excited vibrations of rotor even over maximum rated speeds. Furthermore, the bearings must be designed so as to maintain required tribological performance even under severe operating conditions. However, various tribological troubles have been experienced in power plants in Japan. The actual troubles are analysed, focusing on not only direct mechanical causes but also specific bearing designs that surfaced the troubles. Furthermore human factors that decided such designs are also studied. The powerful database of troubles and analyses will contribute greatly to designing advanced power plants with enhanced service reliability in the future. To this end, trouble information should be disclosed, shared and transferred limitlessly. Cooperation of users of power plants is essential to making more advanced design specifications, because no one has easier access to operating and trouble information of power plants than users.

  • PDF