• Title/Summary/Keyword: Reproducing kernel

Search Result 71, Processing Time 0.02 seconds

SOLUTION OF THE SYSTEM OF FOURTH ORDER BOUNDARY VALUE PROBLEM USING REPRODUCING KERNEL SPACE

  • Akram, Ghazala;Ur Rehman, Hamood
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.55-63
    • /
    • 2013
  • In this paper, a general technique is proposed for solving a system of fourth-order boundary value problems. The solution is given in the form of series and its approximate solution is obtained by truncating the series. Advantages of the method are that the representation of exact solution is obtained in a new reproducing kernel Hilbert space and accuracy of numerical computation is higher. Numerical results show that the method employed in the paper is valid. Numerical evidence is presented to show the applicability and superiority of the new method.

Analysis of a Gas Circuit Breaker Using the Fast Moving Least Square Reproducing Kernel Method

  • Lee, Chany;Kim, Do-Wan;Park, Sang-Hun;Kim, Hong-Kyu;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.272-276
    • /
    • 2009
  • In this paper, the arc region of a gas circuit breaker (GCB) is analyzed using the fast moving least square reproducing kernel method (FMLSRKM) which can simultaneously calculate an approximated solution and its derivatives. For this problem, an axisymmetric and inhomogeneous formulation of the FMLSRKM is used and applied. The field distribution obtained by the FMLSRKM is compared to that of the finite element method. Then, a whole breaking period of a GCB is simulated, including analysis of the arc gas flow by finite volume fluid in the cell, and the electric field of the arc region using the FMLSRKM.

Reproducing kernel based evaluation of incompatibility tensor in field theory of plasticity

  • Aoyagi, Y.;Hasebe, T.;Guan, P.C.;Chen, J.S.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.4
    • /
    • pp.423-435
    • /
    • 2008
  • This paper employs the reproducing kernel (RK) approximation for evaluation of field theory-based incompatibility tensor in a polycrystalline plasticity simulation. The modulation patterns, which is interpreted as mimicking geometrical-type dislocation substructures, are obtained based on the proposed method. Comparisons are made using FEM and RK based approximation methods among different support sizes and other evaluation conditions of the strain gradients. It is demonstrated that the evolution of the modulation patterns needs to be accurately calculated at each time step to yield a correct physical interpretation. The effect of the higher order strain derivative processing zone on the predicted modulation patterns is also discussed.

SOLVING SINGULAR NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS IN THE REPRODUCING KERNEL SPACE

  • Geng, Fazhan;Cui, Minggen
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.631-644
    • /
    • 2008
  • In this paper, we present a new method for solving a nonlinear two-point boundary value problem with finitely many singularities. Its exact solution is represented in the form of series in the reproducing kernel space. In the mean time, the n-term approximation $u_n(x)$ to the exact solution u(x) is obtained and is proved to converge to the exact solution. Some numerical examples are studied to demonstrate the accuracy of the present method. Results obtained by the method are compared with the exact solution of each example and are found to be in good agreement with each other.

The coupling of complex variable-reproducing kernel particle method and finite element method for two-dimensional potential problems

  • Chen, Li;Liew, K.M.;Cheng, Yumin
    • Interaction and multiscale mechanics
    • /
    • v.3 no.3
    • /
    • pp.277-298
    • /
    • 2010
  • The complex variable reproducing kernel particle method (CVRKPM) and the FEM are coupled in this paper to analyze the two-dimensional potential problems. The coupled method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, resulting in improved computational efficiency. A hybrid approximation function is applied to combine the CVRKPM with the FEM. Formulations of the coupled method are presented in detail. Three numerical examples of the two-dimensional potential problems are presented to demonstrate the effectiveness of the new method.

NEW INEQUALITIES VIA BEREZIN SYMBOLS AND RELATED QUESTIONS

  • Ramiz Tapdigoglu;Najwa Altwaijry;Mubariz Garayev
    • Korean Journal of Mathematics
    • /
    • v.31 no.1
    • /
    • pp.109-120
    • /
    • 2023
  • The Berezin symbol à of an operator A on the reproducing kernel Hilbert space 𝓗 (Ω) over some set Ω with the reproducing kernel kλ is defined by $${\tilde{A}}(\lambda)=\,\;{\lambda}{\in}{\Omega}$$. The Berezin number of an operator A is defined by $$ber(A):=\sup_{{\lambda}{\in}{\Omega}}{\mid}{\tilde{A}}({\lambda}){\mid}$$. We study some problems of operator theory by using this bounded function Ã, including estimates for Berezin numbers of some operators, including truncated Toeplitz operators. We also prove an operator analog of some Young inequality and use it in proving of some inequalities for Berezin number of operators including the inequality ber (AB) ≤ ber (A) ber (B), for some operators A and B on 𝓗 (Ω). Moreover, we give in terms of the Berezin number a necessary condition for hyponormality of some operators.

APPLICATIONS OF THE REPRODUCING KERNEL THEORY TO INVERSE PROBLEMS

  • Saitoh, Saburou
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.371-383
    • /
    • 2001
  • In this survey article, we shall introduce the applications of the theory of reproducing kernels to inverse problems. At the same time, we shall present some operator versions of our fundamental general theory for linear transforms in the framework of Hilbert spaces.

  • PDF

A note on SVM estimators in RKHS for the deconvolution problem

  • Lee, Sungho
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.1
    • /
    • pp.71-83
    • /
    • 2016
  • In this paper we discuss a deconvolution density estimator obtained using the support vector machines (SVM) and Tikhonov's regularization method solving ill-posed problems in reproducing kernel Hilbert space (RKHS). A remarkable property of SVM is that the SVM leads to sparse solutions, but the support vector deconvolution density estimator does not preserve sparsity as well as we expected. Thus, in section 3, we propose another support vector deconvolution estimator (method II) which leads to a very sparse solution. The performance of the deconvolution density estimators based on the support vector method is compared with the classical kernel deconvolution density estimator for important cases of Gaussian and Laplacian measurement error by means of a simulation study. In the case of Gaussian error, the proposed support vector deconvolution estimator shows the same performance as the classical kernel deconvolution density estimator.

THE EXACT BERGMAN KERNEL AND THE EXTREMAL PROBLEM

  • Jeong, Moonja
    • Korean Journal of Mathematics
    • /
    • v.13 no.2
    • /
    • pp.183-191
    • /
    • 2005
  • In this paper we find the Laurent series expansions representing the reproducing kernels. Also we find the number of zeroes of the exact Bergman kernel via parallel slit domain in order to relate the exact Bergman kernel to an extremal problem.

  • PDF

NEW ALGORITHM FOR THE DETERMINATION OF AN UNKNOWN PARAMETER IN PARABOLIC EQUATIONS

  • Yue, Sufang;Cui, Minggen
    • The Pure and Applied Mathematics
    • /
    • v.15 no.1
    • /
    • pp.19-34
    • /
    • 2008
  • A new algorithm for the solution of an inverse problem of determining unknown source parameter in a parabolic equation in reproducing kernel space is considered. Numerical experiments are presented to demonstrate the accuracy and the efficiency of the proposed algorithm.

  • PDF