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SOLUTION OF THE SYSTEM OF FOURTH ORDER

BOUNDARY VALUE PROBLEM USING REPRODUCING

KERNEL SPACE

GHAZALA AKRAM∗ AND HAMOOD UR REHMAN

Abstract. In this paper, a general technique is proposed for solving a

system of fourth-order boundary value problems. The solution is given in
the form of series and its approximate solution is obtained by truncating
the series. Advantages of the method are that the representation of exact
solution is obtained in a new reproducing kernel Hilbert space and accu-

racy of numerical computation is higher. Numerical results show that the
method employed in the paper is valid. Numerical evidence is presented to
show the applicability and superiority of the new method..
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1. Introduction

In this paper, reproducing kernel space is applied to develop numerical method
for obtaining smooth approximation to the solution of a system of fourth-order
boundary-value problem of the form:

u(4)(x) =

 f(x), a ≤ x ≤ c,
f(x) + u(x)g(x) + r, c ≤ x ≤ d,
f(x), d ≤ x ≤ b,

(1)

along with the boundary conditions

Case 1

u(a) = u(b) = α1, u(2)(a) = u(2)(b) = α2, u(c) = u(d) = α3, u(2)(c) = u(2)(d) = α4 (2)

Case 2

u(a) = u(b) = α1, u(1)(a) = u(1)(b) = α5, u(c) = u(d) = α3, u(1)(c) = u(1)(d) = α6 (3)
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where f(x) and g(x) are continuous functions on [a, b] and [c, d], respectively.
The parameters r, αi, i = 1, 2, ..., 6 are real constants. Such type of systems
have been used to study a wide class of odd order and nonsymmetric obstacle,
unilateral, moving and equilibrium problems arising in various branches of pure
and applied in a unified and general framework. During the past few years, this
has emerged as an interesting and important branch of applied mathematics. In
[1, 2, 3, 15] the solution of a system of second order boundary value problems
associated with obstacle, unilateral and contact problems is developed using
finite difference and spline techniques. There are also many research papers
[7, 12, 13] for the solution of third order system of boundary value problem using
finite difference and spline methods. In [8] Khalifa and Noor discussed the system
of fourth order boundary value problem using quintic spline collocation method.
Khan et al. [9] developed parametric quintic splines to derive some consistency
relations to develop a numerical method for computing the solution of a system
of fourth-order boundary-value problems associated with obstacle, unilateral,
and contact problems. Momani et al. [11] applied decomposition method and
a modified form of this method for the solution of a system of fourth-order
boundary value problems. Siddiqi and Akram [16] used non polynomial spline
for the solution of system of fourth order boundary value problem associated with
obstacle, unilateral and contact problems. Al-Said and his coworkers [4, 5, 6]
applied spline method for the solution of system of fourth order boundary value
problem associated with obstacle, unilateral and contact problems. Recently,
reproducing kernel Hilbert space method is used for constructing approximate
solutions of boundary value problems [17, 18]

This paper is organized as follows: In Section 2, definition and a derivation
of reproducing kernel is presented. The solution of the problem in reproducing
kernel Hilbert space is given in Section 3. In Section 4, numerical results and
comparison with other methods are presented.

2. Reproducing Kernel Spaces

(i) The reproducing kernel spaceW 1
2 [a0, b0] is defined byW 1

2 [a0, b0]= {u(x)| u
is absolutely continuous real valued function in [a0, b0], u

(1) ∈ L2[a0, b0]} also
the inner product and norm are defined by

⟨u(x), v(x)⟩ =
∫ b0

a0

(u(x)v(x) + u(1)(x)v(1)(x))dx, u(x), v(x) ∈W 1
2 [a0, b0] (4)

∥u∥ =
√
⟨u(x), u(x)⟩, u(x) ∈W 1

2 [a0, b0] (5)

In [10], authors proved that W 1
2 [a0, b0] is a complete reproducing kernel space

and its reproducing kernel is given by

Qx(y) =
1

2 sinh(b0 − a0)
[cosh(x+ y − b0 − a0) + cosh(|x− y| − b0 + a0)].
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(ii) The reproducing kernel space W 5
2 [a0, b0] is defined by W 5

2 [a0, b0] = {u(x)|
u(i), i = 0, 1, ..., 4 are absolutely continuous real valued functions in [a0, b0],
u(5) ∈ L2[a0, b0]}. The inner product and norm in W 5

2 [a0, b0] are given by

⟨u(x), v(x)⟩ =
2∑

i=0

u(i)(a0)v
(i)(a0) +

1∑
i=0

u(i)(b0)v
(i)(b0)

+

∫ b0

a0

u(5)(x)v(5)(x)dx, u(x), v(x) ∈W 5
2 [a0, b0]

(6)

∥u∥ =
√
⟨u(x), u(x)⟩ , u(x) ∈W 5

2 [a0, b0] (7)

Construction of reproducing kernel: Reproducing kernelRx(y) ofW
5
2 [a0, b0]

is the requirement of the algorithm so, it can be obtained by the following
method. Applying Eq. (6), gives

⟨u(y), Rx(y)⟩ =
2∑

i=0

u(i)(a0)R
(i)
x (a0) +

1∑
i=0

u(i)(b0)R
(i)
x (b0) +

∫ b0

a0

u(5)(x)R(i)
x (y)dy (8)

Case 1 Conditions of case 1 and Eq. (8), gives{
R

(1)
x (a0)−R

(8)
x (a0) = 0, R

(1)
x (b0)−R

(8)
x (b0) = 0,

R
(i)
x (a0) = 0, i = 0, 2, 5, 6, R

(i)
x (b0) = 0, i = 0, 2, 5, 6

(9)

Case 2 Conditions of case 2 and Eq. (8), gives{
R

(2)
x (a0)−R

(7)
x (a0) = 0, R

(i)
x (a0) = 0, i = 0, 1, 5, 6

R
(i)
x (b0) = 0, i = 0, 1, 5, 6, 7

(10)

then Eq. (8) also implies that

⟨u(y), Rx(y)⟩ =
∫ b0

a0

u(y)(−R(10)
x (y))dy

For all x ∈ [a0, b0], if Rx(y) also satisfies

−R(10)
x (y) = δ(y − x) (11)

then

⟨u(y), Rx(y)⟩ = u(x). (12)

Eq. (12), shows Rx(y) is reproducing kernel in W 5
2 [a0, b0], for any fixed y ∈

[a0, b0] and any u(x) ∈W 5
2 [a0, b0].

The characteristic equation of Eq. (11) is given by λ10 = 0. Then the charac-
teristic values λ = 0 can be determined whose multiplicity is 10. The reproducing
kernel Rx(y) can be defined as

Rx(y) =

{ ∑10
i=1 ciy

i−1, y ≤ x.∑10
i=1 diy

i−1, y > x.
(13)
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and let Rx(y) satisfies

R(k)
x (x+ a0) = R(k)

x (x− a0), k = 0, 1, ..., 8 (14)

and

R(9)
x (x− a0)−R(9)

x (x+ a0) = 1. (15)

The conditions in Eq. (9) corresponding to system (1), for the case 1 can be
considered, as{

R
(1)
x (a)−R

(8)
x (a) = 0, R

(1)
x (c)−R

(8)
x (c) = 0,

R
(i)
x (a) = 0, i = 0, 2, 5, 6, R

(i)
x (c) = 0, i = 0, 2, 5, 6

(16)

{
R

(1)
x (c)−R

(8)
x (c) = 0, R

(1)
x (d)−R

(8)
x (d) = 0,

R
(i)
x (c) = 0, i = 0, 2, 5, 6, R

(i)
x (d) = 0, i = 0, 2, 5, 6

(17)

{
R

(1)
x (d)−R

(8)
x (d) = 0, R

(1)
x (b)−R

(8)
x (b) = 0,

R
(i)
x (d) = 0, i = 0, 2, 5, 6, R

(i)
x (b) = 0, i = 0, 2, 5, 6

(18)

The coefficients ci and di (i = 1, 2, ..., 10) can be determined from Eqns. (14),
(15) and (16) for the interval [a, c]. For the interval [c, d], the coefficients ci
and di (i = 1, 2, ..., 10) can be determined from Eqns. (14), (15) and (17). The
coefficients ci and di (i = 1, 2, ..., 10) can be determined from Eqns. (14), (15)
and (18) for the interval [d, b].

The conditions in Eq. (10) corresponding to system (1), for the case 2 can be
considered, as{

R
(2)
x (a)−R

(7)
x (a) = 0, R

(i)
x (a) = 0, i = 0, 1, 5, 6

R
(i)
x (c) = 0, i = 0, 1, 5, 6, 7

(19)

{
R

(2)
x (c)−R

(7)
x (c) = 0, R

(i)
x (c) = 0, i = 0, 1, 5, 6

R
(i)
x (d) = 0, i = 0, 1, 5, 6, 7

(20)

{
R

(2)
x (d)−R

(7)
x (d) = 0, R

(i)
x (d) = 0, i = 0, 1, 5, 6

R
(i)
x (b) = 0, i = 0, 1, 5, 6, 7

(21)

The coefficients ci and di (i = 1, 2, ..., 10) can be determined from Eqns. (14),
(15) and (19) for the interval [a, c]. For the interval [c, d], the coefficients ci
and di (i = 1, 2, ..., 10) can be determined from Eqns. (14), (15) and (20). The
coefficients ci and di (i = 1, 2, ..., 10) can be determined from Eqns. (14), (15)
and (21) for the interval [d, b].

In the following lemma it is proved that reproducing kernel is symmetric.

Lemma 2.1. Rx(y) = Ry(x)
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Proof. By the reproducing property,

Rx(y) = ⟨Rx(δ), Ry(δ)⟩ = ⟨Ry(δ), Rx(δ)⟩ = Ry(x).

�

3. Exact and Approximate Solution

A bounded linear operator: The Eq. (1) can be written in the form

u(4)(x)−H(x)u(x) = F (x) (22)

where

H(x) =

 0, a ≤ x ≤ c,
g(x), c ≤ x ≤ d,

0, d ≤ x ≤ b,
(23)

and

F (x) =

 f(x), a ≤ x ≤ c,
f(x) + r, c ≤ x ≤ d,

f(x), d ≤ x ≤ b,
(24)

Let bounded linear operator L :W 5
2 [a0, b0] →W 1

2 [a0, b0] be defined as

(Lu)(x) = u(4)(x)−H(x)u(x) (25)

then transformed into equivalent operator equation

(Lu)(x) = F (x)
u(a) = u(b) = α1, u

(2)(a) = u(2)(b) = α2,
u(c) = u(d) = α3, u

(2)(c) = u(2)(d) = α4

or
u(a) = u(b) = α1, u

(1)(a) = u(1)(b) = α2,
u(c) = u(d) = α5, u

(1)(c) = u(1)(d) = α6

(26)

Choose a countable dense subset D = {xi}∞i=1 in the domain [a0, b0], and let

φi(x) = Qxi(y), i ∈ N (27)

where Qxi(y) ∈ W 1
2 [a0, b0] is reproducing kernel of W 1

2 [a0, b0]. Further assume
that ψi(x) = (L∗φi)(x), where L∗ : W 1

2 [a0, b0] → W 5
2 [a0, b0] is the adjoint

operator of L.

Theorem 3.1. {ψi(x)}∞i=1 is a complete system of W 5
2 [a0, b0].

Proof. For each fixed u(x) ∈W 5
2 [a, b], let ⟨u(x), ψi(x)⟩ = 0 (i = 1, 2, . . . ), which

implies

⟨u(x), (L∗φi)(x)⟩ = ⟨Lu(x), φi(x)⟩ = (Lu)(xi) = 0 . (28)

Since {xi}∞i=1 is dense in [a0, b0], so (Lu)(x) = 0, which implies u ≡ 0 from the
existence of L−1. �

Theorem 3.2. ψi(x) = R4
x(y)|y=xi −H(y)Rx(y)|y=xi .
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Proof. From Eq. (12), it can be written as

ψi(x) = ⟨ψi(y), Rx(y)⟩ = ⟨(L∗φi)(x), Rx(y)⟩ = ⟨φi(y), LRx(y)⟩
= LyRx(y)|y=xi = R4

x(y)|y=xi −H(y)Rx(y)|y=xi .

�

To orthonormalize the sequence {ψi}∞i=1 in the reproducing kernel space
W 5

2 [a0, b0] Gram-Schmidt process can be used as

ψi(x) =

i∑
k=1

βikψk(x), i = 1, 2, . . . (29)

Theorem 3.3. If {xi}∞i=1 is dense in [a0, b0] and the solution of Eq. (26) is
unique, for all u(x) ∈W 5

2 [a0, b0], the series is convergent in the norm of ∥.∥W 5
2
.

If u(x) is exact solution then the solution of Eq. (26) has the form, as

u(x) =
∞∑
i=1

i∑
k=1

βikf(xk)ψi(x).

Proof. Since u(x) ∈W 5
2 [a0, b0] and can be expanded in the form of Fourier series

about normal orthogonal system {ψi}∞i=1 as

u(x) =
∞∑
i=1

⟨(u(x), ψi(x)⟩ψi(x). (30)

Since the space W 5
2 [a0, b0] is Hilbert space so the series

∑∞
i=1⟨(u(x), ψi(x)⟩ψi(x)

is convergent in the norm of ∥.∥W 5
2
. From Eqns. (29) and (30), it can be written

u(x) =

∞∑
i=1

⟨(u(x), ψi(x)⟩ψi(x) =

∞∑
i=1

⟨u(x),
i∑

k=1

βikψk(x)⟩ψi(x)

=

∞∑
i=1

i∑
k=1

βik⟨u(x), ψk(x)⟩ψi(x) =

∞∑
i=1

i∑
k=1

βik⟨u(x), (L∗φk)(x)⟩ψi(x)

=

∞∑
i=1

i∑
k=1

βik⟨Lu(x), φk(x)⟩ψi(x).

If u(x) is the exact solution of Eq. (26) and Lu = f , then

u(x) =
∞∑
i=1

i∑
k=1

βik⟨f(x), φk(x)⟩ψi(x) =
∞∑
i=1

i∑
k=1

βikf(xk)ψi(x).

The approximate solution of u(x) can be obtained in n-term of Fourier series by
truncating the above equation, as

un(x) =
n∑

i=1

i∑
k=1

βikf(xk)ψi(x) . (31)

�
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Theorem 3.4. For each u(x) ∈ W 5
2 [a0, b0], and εn is the error between the

approximate solution un(x) and exact solution u(x). Let ε2n = ∥u(x)− un(x)∥2,
then sequence {εn} is monotone decreasing and εn → 0 (n→ ∞).

Proof. Given

ε2n = ∥u(x)− un(x)∥2 =

∥∥∥∥∥
∞∑

i=n+1

⟨u(x), ψi(x)⟩ψi(x)

∥∥∥∥∥
2

=

∞∑
i=n+1

(⟨u(x), ψi(x)⟩)2.

Similarly,

ε2n−1 = ∥u(x)− un−1(x)∥2 =
∞∑
i=n

(⟨u(x), ψi(x)⟩)2.

Clearly εn−1 ≥ εn. {εn} is monotone decreasing and from Theorem 3.4, it is
noted that Eq. (31) is convergent in the norm of ∥.∥W 5

2
i.e. εn → 0 (n→ ∞). �

4. Numerical Examples

In order to test the utility of the proposed method, two examples are con-
sidered in this section. All the computation are performed using Mathematica
5.2.

Example 4.1. Consider the following system of differential equation [16]

u(4)(x) =

{
1, −1 ≤ x ≤ − 1

2 ,
1
2 ≤ x ≤ 1,

2− 4u, −1
2 ≤ x ≤ 1

2

with the boundary conditions corresponding to the case 1. The exact solution
for the above problem is

u(x) =



1
24x

4 + 1
8x

3 + 13
96x

2 + 1
16x+ 1

96 ,
u(−1) = u(−1

2 ) = 0, u(1)(−1) = u(1)(−1
2 ) = 0, −1 ≤ x ≤ − 1

2 ,
( 12β1)[β1 − exp( 12 + x)(β2 + exp(1))β3 − exp( 12 − x)(β4 + exp(1)β5)],
u(−1/2) = u( 12 ) = 0, u(1)(− 1

2 ) = u(1)( 12 ) = 0, − 1
2 ≤ x ≤ 1

2 ,
1
24x

4 + 1
8x

3 + 13
96x

2 + 1
16x+ 1

96 ,
u( 12 ) = u(1) = 0, u(1)( 12 ) = u(1)(1) = 0, 1

2 ≤ x ≤ 1,

where β1 = exp(2) − 1 + 2 exp(1) sin (1), β2 = sin ( 12 + x) − cos ( 12 + x), β3 =

sin ( 12 − x) + cos ( 12 − x), β4 = sin ( 12 − x) − cos ( 12 − x) and β5 = sin ( 12 + x) +

cos ( 12 + x). The maximum absolute error in the solution is summarized in Table
1 to compare with other method in [16] .

Example 4.2. Consider the following system of differential equation [4, 5, 6]

u(4)(x) =

{
1, −1 ≤ x ≤ − 1

2 ,
1
2 ≤ x ≤ 1,

2− 4u, −1
2 ≤ x ≤ 1

2
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Table 1. Maximum absolute error for Example 4.1

h present method [16](For α = 1
120 , β = 13

60 [16](For α = 1
280 , β = 26

280 ,
γ = 11

20 ) γ = 226
280 )

1/12 2.59× 10−7 7.65× 10−7 5.61× 10−7

1/24 6.65× 10−8 1.14× 10−7 7.81× 10−8

1/48 1.67× 10−8 1.86× 10−8 1.32× 10−8

Table 2. Maximum absolute error for Example 4.2

h Present method [6] [5] [4]
1/12 3.57× 10−6 6.8× 10−6 7.8× 10−6 1, 2× 10−5

1/24 1.11× 10−6 1.6× 10−6 1.9× 10−6 2.8× 10−6

1/48 3.07× 10−7 4.2× 10−7 4.9× 10−7 6.9× 10−7

with the boundary conditions corresponding to the case 2. The exact solution
for the above problem is

u(x) =



1
24x

4 + 1
8x

3 + 1
8x

2 + 3
64x+ 1

192 ,
u(−1) = u(− 1

2 ) = 0, u(2)(−1) = u(2)(−1
2 ) = 0, −1 ≤ x ≤ − 1

2 ,
1
2 − 1

ϕ3
[ϕ1 sinx sinhx+ ϕ2 cosx coshx],

u(−1
2 ) = u( 12 ) = 0, u(2)(−1

2 ) = u(2)( 12 ) = 0, −1
2 ≤ x ≤ 1

2 ,
1
24x

4 − 1
8x

3 + 1
8x

2 − 3
64x+ 1

192 ,
u( 12 ) = u(1) = 0, u(2)( 12 ) = u(2)(1) = 0, 1

2 ≤ x ≤ 1,

where ϕ1 = sin( 12 ) sinh(
1
2 ), ϕ2 = cos( 12 ) cosh(

1
2 ) and ϕ3 = cos 1 + cosh 1. The

maximum absolute error in the solution is summarized in Table 2 to compare
with other methods in [4, 5, 6] .

5. Conclusion

In this paper, an iterative RKHSM is used to find the approximate solution
of the fourth order boundary value problems in the reproducing kernel space. It
is noted that approximate solution obtained by present method converges to the
exact solution. The numerical comparison of the method with other methods
is shown in Tables 1, 2. It is clear that the present method gives better results
than the methods developed in [4, 5, 6, 16].
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