DOI QR코드

DOI QR Code

Analysis of a Gas Circuit Breaker Using the Fast Moving Least Square Reproducing Kernel Method

  • Lee, Chany (School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Kim, Do-Wan (Department of Applied Mathematics, Hanyang University) ;
  • Park, Sang-Hun (Korea Electrotechnology Research Institute (KERI)) ;
  • Kim, Hong-Kyu (Korea Electrotechnology Research Institute (KERI)) ;
  • Jung, Hyun-Kyo (School of Electrical Engineering and Computer Science, Seoul National University)
  • Published : 2009.06.30

Abstract

In this paper, the arc region of a gas circuit breaker (GCB) is analyzed using the fast moving least square reproducing kernel method (FMLSRKM) which can simultaneously calculate an approximated solution and its derivatives. For this problem, an axisymmetric and inhomogeneous formulation of the FMLSRKM is used and applied. The field distribution obtained by the FMLSRKM is compared to that of the finite element method. Then, a whole breaking period of a GCB is simulated, including analysis of the arc gas flow by finite volume fluid in the cell, and the electric field of the arc region using the FMLSRKM.

Keywords

References

  1. Bae, C. Y., Jung, H. K., and Choi, K., ' Calculation of Small Current Breaking Performance of Gas Circuit Breaker Considering the Real Gas Properties of SF6', IEEE Trans. Magn, vol. 4l. no.5. pp 1908-1911, 2005 https://doi.org/10.1109/TMAG.2005.846232
  2. Park, S. H., Bae, C. Y., Kim, H. K., and Jung, H. K., ' Computer simulation of interaction of arc-gas flow in SF6 puffer circuit breaker considering effects of ablated nozzle vapor' , IEEE Trans. Magn., vol. 40, no. 4, pp 1067-1070, 2006
  3. Kim, D. W., and Kim, Y., ' Point collocation methods using the fast moving least square reproducing kemel approximation', Int. J. Numer. Methods. Eng., vol. 56, pp 1445-1464, 2003 https://doi.org/10.1002/nme.618
  4. Kim, D. W., and Kim, H. K., ' Point collocation method based on the FMLSRKM approximation for electromagnetic fie1d analysis', IEEE Trans. Magn., vol. 40, no. 2, pp 1029-1032, 2004 https://doi.org/10.1109/TMAG.2004.824612
  5. Gingold, R. A., Monaghan, J. J., ' Smoothed particle hydrodynamics: theory and application to nonspherical stars', Mon. Not. R. astr. Soc., vol. 181, pp 375-389, 1997
  6. Lu, Y. Y., Belytschko, T., and Gu, Lu, 'A new implementation of the element free Galerkin method', Comput. Meth. Appl. Mech. Eng., vol. 113, pp 397-414, 1994 https://doi.org/10.1016/0045-7825(94)90056-6
  7. Liu, W. K., Li, S., Belytschko, T., 'Moving least square reproducing kemel method (I) methodology and concergence', Comput. Meth. Appl. Mech. Eng., vol. 143, pp 422-433, 1996
  8. Duarte , C. A., Oden, J. T., 'An h-p adaptive method using c1ouds', Comput. Meth. Appl. Mech. Eng., vol. 139, pp 237-262, 1996 https://doi.org/10.1016/S0045-7825(96)01085-7
  9. Liu, W. K., Jun, S., Zhang, Y. F., ' Reproducing kemel partic1e methods', Int. J. Numer. Meth. Fl., vol. 20, pp 1081-1106, 1995 https://doi.org/10.1002/fld.1650200824
  10. Lee, C., Im, C. H., Jung, H. K., Kim, H. K., and Kim, D. w., 'A Posteriori error estimation and adaptive node refinement for fast moving least square reproducing kemel method', Comput. Model. Eng. Sci., vol. 20, no. 1, pp 35-41, 2007
  11. Zhang, J. L., Yan, J. D., Murphy, A. B., Hall, w., and Fang, M. T. C.,' Computational investigation of arc behavior in an auto-expansion circuit breaker contaminated by ablated nozzle vapor', IEEE Trans Plasma Sci., vol. 30, no. 4, pp 706-719, 2002 https://doi.org/10.1109/TPS.2002.1024273
  12. Hafez, M., 'Finite element/finite volume solution of full potential, Euler and Navier-Stokes equations for compressible and incompressible flows', Int. J. Numer. Meth. Fl., vol. 20, pp 713-741, 1995 https://doi.org/10.1002/fld.1650200804
  13. Liebermann, R. W., and Lowke , J. J., 'Radiation emission coefficients for sulfurr hexafluoride arc plasmas,' J. Quantum Spectrosc. Radiant. Transfer, vol. 16, pp 253-264, 1976 https://doi.org/10.1016/0022-4073(76)90067-4