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APPLICATIONS OF THE REPRODUCING
KERNEL THEORY TO INVERSE PROBLEMS

SABUROU SAITOH

ABSTRACT. In this survey article, we shall introduce the applica-
tions of the theory of reproducing kernels to inverse problems. At
the same time, we shall present some operator versions of our fun-
dametal general theory for linear transforms in the framework of
Hilbert spaces.

1. Reproducing kernels

We consider any positive matrix K(p, ¢) on F; that is, for an abstract
set £ and for a complex—valued function K(p,q) on E x E, it satisfies
that for any finite points {p;} of E and for any complex numbers {C;},

i ¥
Then, by the fundamental theorem by Moore-Aronszajn we have:

PROPOSITION 1.1. For any positive matrix K(p,q) on E, there exists
a uniquely determined functional Hilbert space Hy comprising functions
{f} on E and admitting the reproducing kernel K(p,q) (RKHS H)
satisfying and characterized by

(1.1} K(-,q) € Hx forany g€ E
and, for any q € FE and for any f € Hy
(1.2) f@) =) K(a)Hk-
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For some general properties for reproducing kernel Hilbert spaces
and for various constructions of the RKHS Hy from a positive matrix
K(p,q), see the recent book [24] and its Chapter 2, Section 5, respec-
tively.

2. Connection with linear transforms

We shall connect linear transforms in the framework of Hilbert spaces
with reproducing kernels.

For an abstract set E and for any Hilbert (possibly finite-dimensional)
space H, we shall consider an H—valued function h on E

(2.1) h: E—H
and the linear transform for H
(2.2) flp)=(f,h(p))n for FeH

into a linear space comprising functions {f(p)} on E. For this linear
transform (2.2), we form the positive matrix K{p,q) on E defined by

(2.3) K(p,q) = (h(q),h(p)}n on ExE.
Then, we have the following fundamental results:

(I} For the RKHS Hy admitting the reproducing kernel K(p, ¢) defined
by (2.3), the images {f(p)} by (2.2) for H are characterized as the
members of the RKHS Hy.

(I1) In general, we have the inequality in {2.2)
(2.4) Il < N1 Fllwes

however, for any f € Hg there exists a uniquely determined f* € H
satisfying

(2.5) fp)=(Fh(p))nx onE
and
(2.6) Wfllee = NF" Nl

In (2.4), the isometry holds if and only if {h(p);p € E} is complete in
H.

(III} We can obtain the inversion formula for (2.2) in the form

(2.7) f—f,
by using the RKHS Hy.
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However, this inversion formula will depend on, case by case, the
realizations of the RKHS Hy.

(IV) Conversely, if we have an isometrical mapping L from a RKHS Hg
admitting a reproducmg kernel K(p,q) on E onto a Hilbert space H,
then the mapping [ is linear and the isometrical inversion £~ is repre-
sented in the form (2.2) by

(2.8) h(p) = LK(-,p) on E.
Further, then {h{p);p € E} is complete in H.

When (2.2) is isometrical, sometimes we can use the isometrical map-
ping for a realization of the RKHS Hy, conversely—that is, if the in-
verse L1 of the linear transform (2.2) is known, then we have || f||la, =
IZ7 Fline-

We shall state some general applications of the results (I)~(IV) to
several wide subjects and their basic references:

(1) Linear transforms ([14], [21]).
(2) Integral transforms among smooth functions ([28]).
(3) Nonharmonic integral transforms ([17]).
(4) Various norm inequalities ([17], [22]).
(5) Nonlinear transforms ([22], [25]).
(6) Linear integral equations ([29}).
(7) Linear differential equations with variable coefficients ([29]).
(8) Approximation theory ([7}).
(9) Representations of inverse functions ([23]).
(10) Various operators among Hilbert spaces ([26]).
(11) Sampling theorems ([24], Chapter 4, Section 2).
(12) Imterpolation problems of Pick-Nevanlinna type ([17], [18]).
(13) Analytic extension formulas and their applications ([24]).

In this survey article, we shall refer to the applications to inverse
problems. Furthermore, as our original results, we shall present some
operator versions of the fundamental theory (I})~(IV), which may be
expected to have wide applications, similarly.

In connection with inverse problems, (II) gives a general method con-
structing the general inversion formula (2.7) in the linear transform (2.2).
As typical examples, we shall refer to the Weierstrass transform and the
Laplace transform. Meanwhile, (IV) gives a general method determin-
ing the linear system (2.2) from an isometrical mapping L from a RKHS
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Hp onto a Hilbert space H. Sometimes, the system vector h(p) repre-
sents a Green’s function. Then, the input and the output in (2.2) can
be interpreted by the law induced from the Green’s function.

3. Weierstrass transform

As a typical example, we shall consider the Weierstrass transform

A2
(31) wet) = = [ F@ e [— @4 ] &

for functions F € Lo( R, d€). Then, by using (1) and (II) we obtained in
[15] simply and naturally the isometrical identity

N I

for the analytic extension u(z,t) of u{z,t) to the entire complex z =
z + iy plane.
Of course, the image u(z, t) of (3.1) is the solution of the heat equation

(3.3) Uze(Z,t) = us(z,t) on R x {t >0}

satisfying the initial condition

tE.I-EO ||z, t) — F(m)”LQ(R,d:c) =0.

On the other hand, by using the properties of the solution u(z,t) of
(3.3), N. Hayashi derived the identity

> (2t ,
(3.4) Jor@rae=3 2 [ ot ks,
R = 7 JR

The two identities (3.2} and (3.4) were a starting point for obtaining
our various analytic extension formulas and their applications. We can
easily obtain the inversion formulas for the Weierstrass transform from
the isometrical identities (3.2) and (3.4).

As to the equality of the right hand sides of (3.2) and (3.4), we ob-
tained directly

THEOREM 3.1. ([9]) For any analytic function f(z) on the strip S, =
{|Imz| < r} with a finite integral

/] 1f(Pdedy < oo,
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we have the identity

,1,.2
65 [ [ 1Py = Z(;“H), [ s @

Conversely, for a smooth function f(z) with a convergence sum (3.5) on
R, there exists an analytic extension f(z) onto S, satisfying (3.5).

THEOREM 3.2. ([9]) For any a > 0 and for any entire function f(2)
with a finite integral

ffRz |f(2){? exp [—%2-] dzdy < oo,

we have the identity

86 o [ [ 1sores|-L] dxdy=§j#f [ wisaras

Conversely, for a smooth function f(x) with a convergence sum (3.6) on
R, there exists an analytic extension f(z) onto C satisfying the identity
(3.6).

Qur typical results of another type were obtained from the integral
transform

1 gt T exXp | 1g
(3.7) et =7 [ F(z)—{—lﬁ 3
0 2/ (t— &)
in connection with the heat equation (3.3) for = > 0 satisfying the
conditions, for u(x,t) = tv(z,t)

u(0,t) = tF(t) for t>0

and
u(z,0) =0 on x>0
Then, we obtained

THEOREM 3.3. ([1] and [19]) Let A(%) denote the sector {| arg z| <
%}. Then, for any analytic function f{z) on A (%) with a finite integral

// d:::dy < o0,
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we have the identity

@ [/ |f(z)12dmdy—2 vl M T

Conversely, for any smooth funct;on f{z) on {z > 0} with a conver-
gence sum in (3.8), there exists an analytic extension f{z) onto A (%)
satisfying (3.8).

Let A(a) be the sector {|arg 2| < a}. Then, by using the conformal
mapping €*, H. Aikawa examined the relation between Theorem 3.1 and
Theorem 3.3. Then, he used the Mellin transform and some expansion
of Gauss’ hypergeometric series F(a, 3;; z) and we obtained a general
version of Theorem 3.3 and a version for the Szegd space:

THEOREM 3.4. ([2]) Let 0 < a < §. Then, for any analytic function
f(z) on A(a) with a finite integral

f / |£(2)|2dedy < oo,
we have the identity

(3.9) / /A o (2)|*dazdy

(2sina) <, -
= sin( 2a)z @ +1)|f XY f () 2 d.

Conversely, for a smooth funcmon f(z) with a convergence sumonx > 0
in (3.9), there exists an analytic extension f(z) onto A(a) satisfying the
identity (3.9).

THEOREM 3.5. ([2]) Let 0 < o < §. Then, for any analytic function
S(z) on A(«) satisfying
[ 1ty < oo,
|6 <eax
we have the identity

(3.10) / )?|dz| = 2cos Z: (2 ?QI;;) OOO 22|98 f ()| dx

where f(z) mean Fatou’s nontangent:a] boundary values of f on A (a).
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Conversely, for a smooth function f(x) on x > 0 with a convergence
sum in (3.10), there exists an analytic extension f(z) onto A(a) satis-
fying the identity (3.10).

4. Real inversion formulas for the Laplace transform

As another typical and important example, we shall consider real in-
version formulas of the Laplace transform. The inversion formulas of
the Laplace transform are, in general, given by complex forms. The
observation in many cases however gives us real data only and so, it is
important to establish the real inversion formula of the Laplace trans-
form, because we have to extend the real data analytically onto a half
complex plane. The analytic extension formula is, in general, very in-
volved and makes the stability unclear. In particular, in the Reznitskaya
transform combining the solutions of hyperbolic and parabolic partial
differential equations, we need the real inversion formula, because the
observation data of the solutions of hyperbolic partial differential equa-
tions are real-valued. See [27].

Since the image functions of the Laplace transform are, in general,
analytic on a half-plane on the complex plane, in order to obtain the real
inversion formula, we need half plane versions A (%) of Theorem 3.4 and
Theorem 3.5, which are a crucial case « = 7 in those theorems. By using
the famous Gauss summation formula and transformation properties in
the Mellin transform we obtained, in a very general version containing
the Bergman and the Szegt spaces:

THEOREM 4.1. ([20]) For any ¢ > 0, let Hg, (RY) denote the
Bergman-Selberg space admitting the reproducing kernel

K (z,) = 1“_(2@2_)_
(z+@)™
on the right half plane R = {z;Rez > 0}. Then, we have the identity
||f||?qxq(3+) = (I‘(Zq—l—l)'fr € t/R+ |7 (2)|?(22)%" % dzdy , g > %)
— 1
- ng; nIl'(n -+ 2g + 1)

(4.1) : /0 T1 (2 (@) (227 e
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Conversely, any smooth function f(x) on {z > 0} with a convergence
summation in (4.1) can be extended analytically onto R and the an-
alytic extension f(z) satisfying limz—o f(x) = 0 belongs to Hg, (R*)
and the identity (4.1) is valid.

For the Laplace transform

oC
(4.2) ) = / Ft)e~*dt,
0
we have, immediately, the isometrical identity, for any g > 0
oG
2 —
ey = [ IPOPEat
(4.3) (= FIZ)

from (I) and (II). By using (4.3) and (4.1), we obtain

THEOREM 4.2. ([5]) For the Laplace transform (4.2}, we have the
inversion formula

N—oo

(4.4) Ft)=3s— hm/ f(@)e ™ Py (zt)dz  (t > 0)

where the limit is taken in the space Lg and the polynomials Py 4 are
given by

(-1)**1T(2n + 2q) tot20—1
P _ n+v4-2q
walt) 0<V§<NV _V)'F(n+2‘1+1)r(n+y+2‘”€
2ntq) o _(2n+q)
{n+u+2q§ (n+u+2q+3n+2q)§
(45) Hn+v+20)).

The truncation error is estimated by the inequality
2

“F(t) - /0 T

L

> 1 o 2 9o
48 < X IFmrmED / 02 es @] o5 da
n=N+1
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In order to obtain an inversion formula which converges pointwisely
in (4.4), we considered an inversion formula of the Laplace transform for
the Sobolev space satisfying

[ Grer + 1Fop) i <

in [3]. In some subspaces of Hg,(R*) and L2, we established an er-
ror estimate for the inversion formula (4.4). Some characteristics of the
strong singularity of the polynomials Py ,(£) and some effective algo-
rithms for the real inversion formula (4.4) are examined by J. Kajiwara
and M. Tsuji [11, 12]. Furthermore, they gave numerical experiments
by using computers.

5. Representation of initial heat distributions by means of
their heat distributions as functions of time

In the Weierstrass transform (3.1), we obtained the isometrical iden-
tity, for any fixed z € R,

TGS

—00

> 1 0o 2,1
= ZWZm'/(; ’63 [t@tu(z,t)]‘ t J_Edt
j=07v" 2

i 1 ooy 2 .
s=0 7" 2

From this identity, we can obtain the inversion formula
(5.2) u(z,t) — F(£) for any fixed x.

We, in general, in the multi-dimensional Weierstrass transform, estab-
lished an exact and analytical representation formula of the initial heat
distribution I by means of the observations

!
t
(5.3) u(zy,2',t) and ?-u—(if%’)
for @’ = (z9,23, - ,2z,) € R" ' and ¢ > 0, at any fixed point z;, in
13).
We set

(5.4) or = {sup|z|, = € suppF'}
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and suppF denotes the smallest closed set outside which F vanishes
almost everywhere. By using the isometrical identities (3.2), (3.4) and
(5.1), we can solve the inverse source problem of determining the size
or of the initial heat distribution F' from the heat flow u(z,t) observed
either at any fixed time ¢ or at any fixed position z. See [30].

In this way, by using the theory of reproducing kernels, we derived
many inversion formulas of integral transforms containing the Cauchy
integral representation formula and the Poisson integral formula ([16,
17)).

6. Operator versions

We shall give operator versions of the fundamental theory (I)~(IV)
which may be expected to have many concrete applications.

For an abstract set A, we shall consider an operator-valued function
Lyon A,

(6.1) A— Ly

where L) are bounded linear operators from a Hilbert space H into a
Hilbert space H,

(6.2} Ly:H—™H.

In particular, we are interested in the inversion formula

(6.3) Ly — =z, zcH.

We shall fix an element b € 'H and consider the linear mapping
Xp{A) = (Lyr,b)x

(6.4) = (z,Lib)y, zeH

into a linear space comprising functions on A. For this linear transform
{6.4), we form the positive matrix Ky, (A, &) on A defined by

Kp(Ap) = (Lb,Lib)y
(6.5) = (LaL,b,b)y on AxA.

Then, as in (I) ~ (IV), we have the following fundamental results:

(T') For the RKHS H x,, admitting the reproducing kernel K, (\, 1) de-
fined by (6.5), the images {Xp(A)} by (6.4) for H are characterized as
the members of the RKHS Hy, .
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(II') In general, we have the inequality in (6.4)
(6.6) [ Xblla#, <zl

however, for any Xy, € Hg, there exists a uniquely determined r eH
satisfying

(6.7) Xp(A) = (2, L3}b}y on A
and
(6.8) 1Xollae, = llz I

n (6.6), the isometry holds if and only if {L}b; A € A} is complete in
H.

(III') We can obtain the inversion formula for (6.4) and so, for the map-
ping (6.3} as in (III), in the form

(6.9) Lyz — (Lyz,b)y = Xp(A) ~ 2,
by using the RKHS Hp, ..

(IV") Conversely, if we have an isometrical mapping L from a RKHS H o
admitting a reproducing kernel Kp(A, p) on A onto a Hilbert space H,
then the mapping L is linear and the isometrical inversion L1 is repre-
sented in the form (6.4) by using

(6.10) L}b= LKp(-,A) on A.
Further, then {L}b; A € A} is complete in H.
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