• Title/Summary/Keyword: Report Generation

Search Result 451, Processing Time 0.026 seconds

Interface State Control of Amorphous InGaZnO Thin Film Transistor by Surface Treatment of Gate Insulator (게이트 절연막의 표면처리에 의한 비정질 인듐갈륨징크옥사이드 박막트랜지스터의 계면 상태 조절)

  • Kim, Bo-Sul;Kim, Do-Hyung;Lee, Sang-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.693-696
    • /
    • 2011
  • Recently, amorphous oxide semiconductors (AOSs) based thin-film transistors (TFTs) have received considerable attention for application in the next generation displays industry. The research trends of AOSs based TFTs investigation have focused on the high device performance. The electrical properties of the TFTs are influenced by trap density. In particular, the threshold voltage ($V_{th}$) and subthreshold swing (SS) essentially depend on the semiconductor/gate-insulator interface trap. In this article, we investigated the effects of Ar plasma-treated $SiO_2$ insulator on the interfacial property and the device performances of amorphous indium gallium zinc oxide (a-IGZO) TFTs. We report on the improvement in interfacial characteristics between a-IGZO channel layer and gate insulator depending on Ar power in plasma process, since the change of treatment power could result in different plasma damage on the interface.

Transcatheter Embolization of Giant Pulmonary Arteriovenous Malformation with an Amplatzer Vascular Plug II

  • Kong, Joon Hyuk;Oh, Tae Yun;Kim, Jung Tae;Baek, Kang Seok;Chang, Woon-Ha
    • Journal of Chest Surgery
    • /
    • v.45 no.5
    • /
    • pp.326-329
    • /
    • 2012
  • Pulmonary arteriovenous malformation (PAVM) is a rare anomalous direct communication between the pulmonary artery and vein with a considerable risk of serious complications such as cerebral thromboembolism or abscess and pulmonary hemorrhage. Although the past, surgical resection such as lobectomy was mostly used to treat PAVM, the recent development of endovascular treatment has made it a primary consideration to perform transcatheter embolization using coils or detachable balloons. We report a case of successful transcatheter embolization of giant PAVM with the second generation Amplatzer vascular plug II as a new self-expanding device.

In Vivo Expression of EphrinA5-Fc in Mice Results in Cephalic Neural Crest Agenesis and Craniofacial Abnormalities

  • Noh, Hyuna;Park, Eunjeong;Park, Soochul
    • Molecules and Cells
    • /
    • v.37 no.1
    • /
    • pp.59-65
    • /
    • 2014
  • Eph receptors and their ligands ephrins have been implicated in guiding the directed migration of neural crest cells (NCCs). In this study, we found that Wnt1-Cre-mediated expression of ephrinA5-Fc along the dorsal midline of the dien- and mesencephalon resulted in severe craniofacial malformation of mouse embryo. Interestingly, expression of cephalic NCC markers decreased significantly in the frontonasal process and branchial arches 1 and 2, which are target areas for the migratory cephalic NCCs originating in the dien- and mesencephalon. In addition, these craniofacial tissues were much smaller in mutant embryos expressing ephrinA5-Fc. Importantly, EphA7-positive cephalic NCCs were absent along the dorsal dien- and mesencephalon of mutant embryos expressing ephrinA5-Fc, suggesting that the generation of cephalic NCCs is disrupted due to ephrinA5-Fc expression. NCC explant experiments suggested that ephrinA5-Fc perturbed survival of cephalic NCC precursors in the dorsal midline tissue rather than affecting their migratory capacity, which was consistent with our previous report that expression of ephrinA5-Fc in the dorsal midline is responsible for severe neuroepithelial cell apoptotic death. Taken together, our findings strongly suggest that expression of ephrinA5-Fc decreases a population of cephalic NCC precursors in the dorsal midline of the dien- and mesencephalon, thereby disrupting craniofacial development in the mouse embryos.

Evaluating Perceived Smartness of Product from Consumer's Point of View: The Concept and Measurement

  • Lee, Won-Jun
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.1
    • /
    • pp.149-158
    • /
    • 2019
  • Due to the rapid development of IT (information technology) and internet, products become smart and able to collect, process and produce information and can think of themselves to provide better service to consumers. However, research on the characteristics of smart product is still sparse. In this paper, we report the systemic development of a scale to measure the perceived product smartness associated with smart product. To develop product smartness scale, this study follows systemic scale development processes of item generation, item reduction, scale validation, reliability and validity test consequently. And, after acquiring a large amount of qualitative interview data asking the definition of smart product, we add a unique process to reduce the initial items using both a text mining method using 'r' s/w and traditional reliability and validity tests including factor analysis. Based on an initial qualitative inquiry and subsequent quantitative survey, an eight-factor scale of product smartness is developed. The eight factors are multi-functionality, human-like touch, ability to cooperate, autonomy, situatedness, network connectivity, integrity, and learning capability consequently. Results from Korean samples support the proposed measures of product smartness in terms of reliability, validity, and dimensionality. Implications and directions for further study are discussed. The developed scale offers important theoretical and pragmatic implications for researchers and practitioners.

Optimal design of passive containment cooling system for innovative PWR

  • Ha, Huiun;Lee, Sangwon;Kim, Hangon
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.941-952
    • /
    • 2017
  • Using the Generation of Thermal-Hydraulic Information for Containments (GOTHIC) code, thermal-hydraulic phenomena that occur inside the containment have been investigated, along with the preliminary design of the passive containment cooling system (PCCS) of an innovative pressurized water reactor (PWR). A GOTHIC containment model was constructed with reference to the design data of the Advanced Power Reactor 1400, and report related PCCS. The effects of the design parameters were evaluated for passive containment cooling tank (PCCT) geometry, PCCS heat exchanger (PCCX) location, and surface area. The analyzed results, obtained using the single PCCT, showed that repressurization and reheating phenomena had occurred. To resolve these problems, a coupled PCCT concept was suggested and was found to continually decrease the containment pressure and temperature without repressurization and reheating. If the installation level of the PCCX is higher than that of the PCCT, it may affect the PCCS performance. Additionally, it was confirmed that various means of increasing the external surface area of the PCCX, such as fins, could help improve the energy removal performance of the PCCS. To improve the PCCS design and investigate its performance, further studies are needed.

Generation of Full-Length Infectious cDNA Clones of Middle East Respiratory Syndrome Coronavirus

  • Lee, Jeong Yoon;Bae, Sojung;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.999-1007
    • /
    • 2019
  • Middle East respiratory syndrome coronavirus (MERS-CoV) was first identified in Saudi Arabia in 2012 and related infection cases have been reported in over 20 countries. Roughly 10,000 human cases have so far been reported in total with fatality rates at up to 40%. The majority of cases have occurred in Saudi Arabia with mostly sporadic outbreaks outside the country except for the one in South Korea in 2015. The Korean MERS-CoV strain was isolated from the second Korean patient and its genome was fully sequenced and deposited. To develop virus-specific protective and therapeutic agents against the Korean isolate and to investigate molecular determinants of virus-host interactions, it is of paramount importance to generate its full-length cDNA. Here we report that two full-length cDNAs from a Korean patient-isolated MERS-CoV strain were generated by a combination of conventional cloning techniques and efficient Gibson assembly reactions. The full-length cDNAs were validated by restriction analysis and their sequence was verified by Sanger method. The resulting cDNA was efficiently transcribed in vitro and the T7 promoter-driven expression was robust. The resulting reverse genetic system will add to the published list of MERS-CoV cDNAs and facilitate the development of Korean isolate-specific antiviral measures.

High Temperature Supercapacitor with Free Standing Quasi-solid Composite Electrolytes (독립형 반고체 복합 전해질을 적용한 고온 수퍼커패시터)

  • Kim, Dong Won;Jung, Hyunyoung
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.121-128
    • /
    • 2019
  • Supercapacitors are attracting much attention in sensor, military and space applications due to their excellent thermal stability and non-explosion. The ionic liquid is more thermally stable than other electrolytes and can be used as a high temperature electrolyte, but it is not easy to realize a high temperature energy device because the separator shrinks at high temperature. Here, we report a study on electrochemical supercapacitors using a composite electrolyte film that does not require a separator. The composite electrolyte is composed of thermoplastic polyurethane, ionic liquid and fumed silica nanoparticles, and it acts as a separator as well as an electrolyte. The silica nanoparticles at the optimum mass concentration of 4wt% increase the ionic conductivity of the composite electrolyte and shows a low interfacial resistance. The 5 wt% polyurethane in the composite electrolyte exhibits excellent electrochemical properties. At $175^{\circ}C$, the capacitance of the supercapacitor using our free standing composite electrolyte is 220 F/g, which is 25 times higher than that at room temperature. This study has many potential applications in the electrolyte of next generation energy storage devices.

Recent Advances on Multi-Dimensional Nanocarbons for Superapacitors: A Review

  • Bae, Joonho
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.251-259
    • /
    • 2018
  • In general, the charge storage characteristics and overall performance of electrochemical energy devices (such as lithiumion batteries and supercapacitors) significantly depends on the structural and geometrical factors of the electrodes' active materials. The most widely used active materials of electrochemical energy storage devices are based on carbons of various forms. Each carbon type has drawbacks and advantages when used as the electrode material. Studies have been recently carried out to combine different types of carbons, in particular nanostructured carbons, in order to overcome the structure-originated limitations and thus enhance the overall electrochemical performances. In this feature article, we report the recent progress on the development of this novel class of materials (multidimensional nanocarbons), and their applications for supercapacitors. Multidimensional nanocarbons include graphenes/carbon nanotubes (CNTs), CNTs/carbon films, CNTs/fullerenes, and ternary carbon nanostructures. Various applications using these multidimensional nanocarbons have been proposed and demonstrated in the literature. Owing to the recent extensive studies on electrochemical energy storage devices and considering that carbons are their most fundamental electrode materials, the number of reports on nanocarbons employed as electrodes of the electrochemical energy storage devices is rapidly increasing. Recently, numerous multidimensional nanocarbons have been designed, prepared, and utilized as electrodes of electrochemical capacitors or supercapacitors, which are considered next-generation energy devices owing to their unique merits compared to the conventional structures. In this review, we summarize the basic motivations, preparation methods, and resultant supercapacitor performances of each class of multidimensional nanocarbons published in the literature, focusing on recent reports.

Methods of Mineral Engineering in a Fight Against Varrosa Infestation

  • Pawlikowski, Maciej;Przybyszewski, Hubert;Stepien, Lech
    • The Korean Journal of Food & Health Convergence
    • /
    • v.5 no.1
    • /
    • pp.33-38
    • /
    • 2019
  • The purpose of previous study centered around introducing minerals into bee colonies was to observe the Varrosa destructor mites-repelling effect of minerals ("Pszczelarstwo" 6/2016). The results of research published so far confirmed the purpose of using minerals in the fight against Varrosa infestation. This publication presents partial results of the next stage of research. Using foundation enriched with studied minerals in right proportions leads to diminishing the number of Varroa destructor parasites in bee colonies. It may also contribute to increase in the amount of honey obtained from bees. Foundations with minerals were in most cases correctly filled with larvae, and the new generation of bees didn't show any morphometric or physical-motor aberrations. The effect of minerals in the foundation weakens with time, which requires adequate reaction from the beekeeper. The study showed no negative effect of mineral suspensions added directly to royal jelly of larvae in the swarm cells and worker cells on the development of bees. Additional research was carried out in August and September and led to surprising observations, which are still too early to report. It obliges us to carry out further, extended subject research on a large number of bee colonies in 2017.

Review on Atomic Layer Deposition of HfO2-based Ferroelectrics for Semiconductor Devices (반도체 소자용 산화하프늄 기반 강유전체의 원자층 증착법 리뷰)

  • Lee, Younghwan;Kwon, Taegyu;Park, Min Hyuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.5
    • /
    • pp.247-260
    • /
    • 2022
  • Since the first report on ferroelectricity in Si-doped hafnia (HfO2), this emerging ferroelectrics have been considered promising for the next-generation semiconductor devices with their characteristic nonvolatile data storage. The robust ferroelectricity in the sub-10-nm thickness regime has been proven by numerous research groups. However, extending their scalability below the 5 nm thickness with low temperature processes compatible with the back-end-of-line technology. In this review, therefore, the current status, technical issues, and their potential solutions of atomic layer deposition (ALD) of HfO2-based ferroelectrics are comprehensively reviewed. Several technical issues in the physical scaling of the ferroelectric thin films and potential solutions including advanced ALD techniques including discrete feeding ALD, atomic layer etching, and area selective ALD are introduced.