DOI QR코드

DOI QR Code

Recent Advances on Multi-Dimensional Nanocarbons for Superapacitors: A Review

  • Bae, Joonho (Department of Nano-physics, Gachon University)
  • Received : 2018.06.12
  • Accepted : 2018.08.13
  • Published : 2018.12.31

Abstract

In general, the charge storage characteristics and overall performance of electrochemical energy devices (such as lithiumion batteries and supercapacitors) significantly depends on the structural and geometrical factors of the electrodes' active materials. The most widely used active materials of electrochemical energy storage devices are based on carbons of various forms. Each carbon type has drawbacks and advantages when used as the electrode material. Studies have been recently carried out to combine different types of carbons, in particular nanostructured carbons, in order to overcome the structure-originated limitations and thus enhance the overall electrochemical performances. In this feature article, we report the recent progress on the development of this novel class of materials (multidimensional nanocarbons), and their applications for supercapacitors. Multidimensional nanocarbons include graphenes/carbon nanotubes (CNTs), CNTs/carbon films, CNTs/fullerenes, and ternary carbon nanostructures. Various applications using these multidimensional nanocarbons have been proposed and demonstrated in the literature. Owing to the recent extensive studies on electrochemical energy storage devices and considering that carbons are their most fundamental electrode materials, the number of reports on nanocarbons employed as electrodes of the electrochemical energy storage devices is rapidly increasing. Recently, numerous multidimensional nanocarbons have been designed, prepared, and utilized as electrodes of electrochemical capacitors or supercapacitors, which are considered next-generation energy devices owing to their unique merits compared to the conventional structures. In this review, we summarize the basic motivations, preparation methods, and resultant supercapacitor performances of each class of multidimensional nanocarbons published in the literature, focusing on recent reports.

Keywords

References

  1. V. C. Tung, L.-M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner and Y. Yang, Nano Lett. 2009, 9(5), 1949-1955. https://doi.org/10.1021/nl9001525
  2. H. Jiang, P. S. Lee and C. Li, Energy Environ. Sci. 2013, 6(1), 41-53. https://doi.org/10.1039/c2ee23284g
  3. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley, Nature 1985, 318, 162. https://doi.org/10.1038/318162a0
  4. M. Li, J. Cheng, J. Wang, F. Liu and X. Zhang, Electrochim. Acta 2016, 206, 108-115. https://doi.org/10.1016/j.electacta.2016.04.084
  5. J. Suntivich, H. A. Gasteiger, N. Yabuuchi and Y. Shao-Horn, J. Electrochem.l Soc. 2010, 157(8), B1263-B1268. https://doi.org/10.1149/1.3456630
  6. X. Wang, X. Han, M. Lim, N. Singh, C. L. Gan, M. Jan and P. S. Lee, J. Phys. Chem. C 2012, 116(23), 12448-12454. https://doi.org/10.1021/jp3028353
  7. A. K. Singh, D. Sarkar, K. Karmakar, K. Mandal and G. G. Khan, ACS Appl. Mater. Interfaces 2016, 8(32), 20786-20792. https://doi.org/10.1021/acsami.6b05933
  8. C. Lamiel and J.-J. Shim, New J. Chem. 2016, 40(5), 4810-4817. https://doi.org/10.1039/c6nj00267f
  9. J. Zang, S.-J. Bao, C. M. Li, H. Bian, X. Cui, Q. Bao, C. Q. Sun, J. Guo and K. Lian, J. Phys. Chem. C 2008, 112(38), 14843-14847. https://doi.org/10.1021/jp8049558
  10. J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang and F. Wei, Carbon 2010, 48(13), 3825-3833. https://doi.org/10.1016/j.carbon.2010.06.047
  11. V. Subramanian, H. Zhu and B. Wei, J. Power Sources 2006, 159(1), 361-364. https://doi.org/10.1016/j.jpowsour.2006.04.012
  12. Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian and F. Wei, Adv. Mater. 2010, 22(33), 3723-3728. https://doi.org/10.1002/adma.201001029
  13. L. L. Zhang, R. Zhou and X. S. Zhao, J. Mater. Chem. 2010, 20(29), 5983-5992. https://doi.org/10.1039/c000417k
  14. E. Yoo, J. Kim, E. Hosono, H.-s. Zhou, T. Kudo and I. Honma, Nano Lett. 2008, 8(8), 2277-2282. https://doi.org/10.1021/nl800957b
  15. M. D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff, Nano Lett. 2008, 8(10), 3498-3502. https://doi.org/10.1021/nl802558y
  16. M. Beidaghi and C. Wang, Adv. Func. Mater. 2012, 22(21), 4501-4510. https://doi.org/10.1002/adfm.201201292
  17. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya and L. C. Qin, Phys. Chem. Chem. Phys. 2011, 13(39), 17615-17624. https://doi.org/10.1039/c1cp21910c
  18. S. Y. Yang, K. H. Chang, H. W. Tien, Y. F. Lee, S. M. Li, Y. S. Wang, J. Y. Wang, C. C. M. Ma and C. C. Hu, J. Mater. Chem. 2011, 21(7), 2374-2380. https://doi.org/10.1039/c0jm03199b
  19. Y. Wang, Y. P. Wu, Y. Huang, F. Zhang, X. Yang, Y. F. Ma and Y. S. Chen, J. Phys. Chem. C 2011, 115(46), 23192-23197. https://doi.org/10.1021/jp206444e
  20. P. Chen, T. Y. Xiao, Y. H. Qian, S. S. Li and S. H. Yu, Adv. Mater. 2013, 25(23), 3192-3196. https://doi.org/10.1002/adma.201300515
  21. D. T. Pham, T. H. Lee, D. H. Luong, F. Yao, A. Ghosh, V. T. Le, T. H. Kim, B. Li, J. Chang and Y. H. Lee, ACS Nano 2015, 9(2), 2018-2027. https://doi.org/10.1021/nn507079x
  22. W. Fan, Y.-E. Miao, Y. Huang, W. W. Tjiu and T. Liu, RSC Adv. 2015, 5(12), 9228-9236. https://doi.org/10.1039/C4RA13675F
  23. Y. Liu, G. Yuan, Z. Jiang, Z. Yao and M. Yue, J. ALLOY. COMPD. 2015, 618, 37-43. https://doi.org/10.1016/j.jallcom.2014.08.167
  24. D. Cai, M. Song and C. Xu, Adv. Mater. 2008, 20(9), 1706-1709. https://doi.org/10.1002/adma.200702602
  25. D. Yu and L. Dai, J. Phys. Chem. Lett. 2009, 1(2), 467-470. https://doi.org/10.1021/jz9003137
  26. J. Liu, L. Zhang, H. B. Wu, J. Lin, Z. Shen and X. W. D. Lou, Energy Environ. Sci. 2014, 7(11), 3709-3719. https://doi.org/10.1039/C4EE01475H
  27. L. Yu, J. S. Park, Y.-S. Lim, C. S. Lee, K. Shin, H. J. Moon, C.-M. Yang, Y. S. Lee and J. H. Han, Nanotechnology, 2013, 24 (15), 155604. https://doi.org/10.1088/0957-4484/24/15/155604
  28. D. H. Lee, J. E. Kim, T. H. Han, J. W. Hwang, S. Jeon, S. Y. Choi, S. H. Hong, W. J. Lee, R. S. Ruoff and S. O. Kim, Adv. Mater. 2010, 22(11), 1247-1252. https://doi.org/10.1002/adma.200903063
  29. Y. Cheng, S. Lu, H. Zhang, C. V. Varanasi and J. Liu, Nano Lett. 2012, 12(8), 4206-4211. https://doi.org/10.1021/nl301804c
  30. B. Boskovic, V. Golovko, M. Cantoro, B. Kleinsorge, A. Chuang, C. Ducati, S. Hofmann, J. Robertson and B. Johnson, Carbon 2005, 43(13), 2643-2648. https://doi.org/10.1016/j.carbon.2005.04.034
  31. O. Smiljanic, T. Dellero, A. Serventi, G. Lebrun, B. Stansfield, J. Dodelet, M. Trudeau and S. Desilets, Chem. Phys. Lett. 2001, 342(5-6), 503-509. https://doi.org/10.1016/S0009-2614(01)00650-9
  32. H. Tang, J. Chen, L. Nie, S. Yao and Y. Kuang, Electrochim. Acta 2006, 51(15), 3046-3051. https://doi.org/10.1016/j.electacta.2005.08.038
  33. B. Kim, H. Chung and W. Kim, J. Phys. Chem. 2010, 114(35), 15223-15227.
  34. X. Liu, K. H. Baronian and A. J. Downard, Carbon 2009, 47(2), 500-506. https://doi.org/10.1016/j.carbon.2008.10.033
  35. N. E. Tran, S. G. Lambrakos and J. J. Lagowski, J. Mater. Eng. Perform. 2009, 18(1), 95-101. https://doi.org/10.1007/s11665-008-9267-8
  36. Y. Zhang, L. Ren, S. Wang, A. Marathe, J. Chaudhuri and G. Li, J. Mater. Chem. 2011, 21(14), 5386-5391. https://doi.org/10.1039/c1jm10257e
  37. R. N. Goyal, S. P. Singh, S. Chatterjee and S. Bishnoi, Indian J. Chem. 2010, 49A(1), 26-33.
  38. H. Zhu, W. Wu, H. Zhang, L. Fan and S. Yang, Electroanalysis 2009, 21(24), 2660-2666. https://doi.org/10.1002/elan.200900282
  39. T. Gan, C. Hu, Z. Sun and S. Hu, Electrochim. Acta 2013, 111, 738-745. https://doi.org/10.1016/j.electacta.2013.08.059
  40. R. B. Rakhi, W. Chen, D. Cha and H. N. Alshareef, Adv. Energy Mater. 2012, 2(3), 381-389. https://doi.org/10.1002/aenm.201100609
  41. J. Yan, T. Wei, B. Shao, F. Ma, Z. Fan, M. Zhang, C. Zheng, Y. Shang, W. Qian and F. Wei, Carbon 2010, 48(6), 1731-1737. https://doi.org/10.1016/j.carbon.2010.01.014
  42. R. Rakhi and H. N. Alshareef, J. Power Sources 2011, 196(20), 8858-8865. https://doi.org/10.1016/j.jpowsour.2011.06.038
  43. Y. Zhao, W. Ran, J. He, Y. Huang, Z. Liu, W. Liu, Y. Tang, L. Zhang, D. Gao and F. Gao, Small 2015, 11(11), 1310-1319. https://doi.org/10.1002/smll.201401922
  44. T. Cheng, B. Yu, L. Cao, H. Tan, X. Li, X. Zheng, W. Li, Z. Ren and J. Bai, J. Colloid Interface Sci. 2017, 501, 1-10. https://doi.org/10.1016/j.jcis.2017.04.039
  45. R. Rakhi and M. Lekshmi, Electrochim. Acta, 2017, 231, 539-548. https://doi.org/10.1016/j.electacta.2017.02.095
  46. F. Zhang, X. Yang, Y. Xie, N. Yi, Y. Huang and Y. Chen, Carbon, 2015, 82, 161-167. https://doi.org/10.1016/j.carbon.2014.10.046