Acknowledgement
이 연구는 서울대학교 신임교수 연구정착금으로 지원되는 연구비에 의하여 수행되었음.
References
- M. H. Park,Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, J. Muller, A. Kersch, U. Schroeder, T. Mikolajick, C. S. Hwang, Ferroelectricity and antiferroelectricity of doped thin HfO2-based films, Adv. Mater., 27 (2015) 1811-1831. https://doi.org/10.1002/adma.201404531
- T. S. Boscke, J. Muller, D. Brauhaus, U. Schroder, U. Bottger, Ferroelectricity in hafnium oxide thin films, Appl. Phys. Lett., 99 (2011) 102903. https://doi.org/10.1063/1.3634052
- O. Ohtaka, H. Fukui, T.Kunisada, T. Fujisawa, K. Funakoshi, W. Utsumi, T. Irifune, K. Kuroda, T. Kikegawa, Phase relations and volume changes of hafnia under high pressure and high temperature, J. Am. Ceram. Soc., 84 (2004) 1369-1373. https://doi.org/10.1111/j.1151-2916.2001.tb00843.x
- J. Muller, E. Yurchuk, T. Schlosser, J. Paul, R. Hoffmann, S. Muller, D. Martin, S. Slesazeck, P. Polakowski, J. Sundqvist, M. Czernohorsky, K. Seidel, P. Kucher, R. Boschke, M. Trentzsch, K. Gebauer, U. Schroder, T. Mikolajick, Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG, 2012 Symp. VLSI Technol., (2012) 25-26.
- J. Muller, T. S. Boscke, S. Muller, E. Yurchuk, P. Polakowski, J. Paul, D. Martin, T. Schenk, K. Khullar, A. Kersch, W. Weinreich, S. Riedel, K. Seidel, A. Kumar, T. M. Arruda, S. V. Kalinin, T. Schlosser, R. Boschke, R. van Bentum, U. Schroder, T. Mikolajick, Ferroelectric hafnium oxide: a CMOS-compatible and highly scalable approach to future ferroelectric memories, 2013 IEEE Int. Electron Devices Meet., (2013) 10.8.1-10.8.4.
- K. Florent, M. Pesic, A. Subirats, K. Banerjee, S. Lavizzari, A. Arreghini, L. Di Piazza, G. Potoms, F. Sebaai, S. R. C. McMitchell, M. Popovici, G. Groeseneken, J. Van Houdt, Vertical ferroelectric HfO2 FET based on 3-D NAND architecture: towards dense low-power memory, 2018 IEEE Int. Electron Devices Meet., (2018) 2.5.1-2.5.4.
- J. Okuno, T. Kunihiro, K. Konishi, H. Maemura, Y. Shuto, F. Sugaya, M. Materano, T. Ali, K. Kuehnel, K. Seidel, U. Schroeder, T. Mikolajick, M. Tsukamoto, T. Umebayashi, SoC compatible 1T1C FeRAM memory array based on ferroelectric Hf0.5Zr0.5O2, 2020 IEEE Symp. VLSI Technol., (2020) 1-2.
- S. C. Chang, N. Haratipour, S. Shivaraman, T. L Brown-Heft, J. Peck, C. C. Lin, I. C. Tung, D. R Merrill, H. Liu, C. Y. Lin, F. Hamzaoglu, M. V Metz, I. A Young, J. Kavalieros, U. E Avci, Anti-ferroelectric HfxZr1-xO2 capacitors for High-density 3-D Embedded-DRAM, 2020 IEEE Int. Electron Devices Meet., (2020) 28.1.1-28.1.4.
- M. Sung, K. Rho, J. Kim, J. Cheon, K. Choi, D. Kim, H. Em, G. Park, J. Woo, Y. Lee, J. Ko, M. Kim, G. Lee, S. W. Ryu, D. S. Sheen, Y. Joo, S. Kim, C. H. Cho, M. H. Na, J. Kim, Low voltage and high speed 1Xnm 1T1C FE-RAM with ultra-thin 5nm HZO, 2021 IEEE Int. Electron Devices Meet., (2021) 33.3.1-33.3.4.
- S. Yoon, S. I. Hong, G. Choi, D. Kim, I. Kim, S. M. Jeon, C. Kim, K. Min, Highly stackable 3D ferroelectric NAND devices: beyond the charge trap based memory, 2022 IEEE Int. Memory Workshop (2022) 1-4.
- S. Fujii, Y. Kamimuta, T. Ino, Y. Nakasaki, R. Takaishi, M. Saitoh, First demonstration and performance improvement of ferroelectric HfO2-based resistive switch with low operation current and intrinsic diode property, 2016 IEEE Symp. VLSI Technol., (2016) 1-2.
- V. Cremers, R. L. Puurunen, J. Dendooven, Conformality in atomic layer deposition: Current status overview of analysis and modelling, Appl. Phys. Rev., 6 (2019) 021302. https://doi.org/10.1063/1.5060967
- H. Kim, Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom., 21 (2003) 2231.
- H. A. Hsain, Y. Lee, M. Materano, T. Mittmann, A. Payne, T. Mikolajick, U. Schroeder, G. N. Parsons, J. L. Jones, Many routes to ferroelectric HfO2: A review of current deposition methods, J. Vac. Sci. Technol., A 40 (2022) 010803. https://doi.org/10.1116/6.0001317
- A. Chouprik, D. Negrov, E. Y. Tsymbal, A. Zenkevich, Defects in ferroelectric HfO2, Nanoscale, 13 (2021) 11635-11678. https://doi.org/10.1039/D1NR01260F
- M. Materano, P. D. Lomenzo, A. Kersch, M. H. Park, T. Mikolajick, U. Schroeder, Interplay between oxygen defects and dopants: effect on structure and performance of HfO2-based ferroelectrics, Inorg. Chem. Front., 8 (2021) 2650-2672. https://doi.org/10.1039/D1QI00167A
- K. D. Kim, M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, Y. H. Lee, S. D. Hyun, T. Gwon, C. S. Hwang, Ferroelectricity in undoped-HfO2 thin films induced by deposition temperature control during atomic layer deposition, J. Mater. Chem., C 4 (2016) 6864-6872. https://doi.org/10.1039/C6TC02003H
- J. Liao, B. Zeng, Q. Sun, Q. Chen, M. Liao, C. Qiu, Z. Zhang, Y. Zhou, Grain size engineering of ferroelectric Zr-doped HfO2 for the highly scaled devices applications, IEEE Electron Device Lett., 40 (2019) 1868-1871. https://doi.org/10.1109/LED.2019.2944491
- B. S. Kim, S. D. Hyun, T. Moon, K. D. Kim, Y. H. Lee, H. W. Park, Y. B. Lee, J. Roh, B. Y. Kim, H. H. Kim, M. H. Park, C. S. Hwang, A comparative study on the ferroelectric performances in atomic layer deposited Hf0.5Zr0.5O2 thin films using tetrakis(ethylmethylamino) and tetrakis(dimethylamino) precursors, Nanoscale Res. Lett., 15 (2020) 72. https://doi.org/10.1186/s11671-020-03301-4
- M. Materano, T. Mittmann, P. D. Lomenzo, C. Zhou, J. L. Jones, M. Falkowski, A. Kersch, T. Mikolajick, U. Schroeder, Influence of oxygen content on the structure and reliability of ferroelectric HfxZr1-xO2 layers, ACS Appl. Electron. Mater., 2 (2020) 3618-3626. https://doi.org/10.1021/acsaelm.0c00680
- T. Mittmann, M. Materano, S. C. Chang, I. Karpov, T. Mikolajick, U. Schroeder, Impact of oxygen vacancy content in ferroelectric HZO films on the device performance, 2020 IEEE Int. Electron Devices Meet., (2020) 18.4.1-18.4.4.
- J. Y. Park, K. Yang, D. H. Lee, S. H. Kim, Y. Lee, P. R. S. Reddy, J. L. Jones, M. H. Park, A perspective on semiconductor devices based on fluorite-structured ferroelectrics from the materials-device integration perspective, J. Appl. Phys., 128 (2020) 240904. https://doi.org/10.1063/5.0035542
- M. L. Green, M. Y. Ho, B. Busch, G. D. Wilk, T. Sorsch, T. Conard, B. Brijs, W. Vandervorst, P. I. Raisanen, D. Muller, M. Bude, J. Grazul, Nucleation and growth of atomic layer deposited HfO2 gate dielectric layers on chemical oxide (Si-O-H) and thermal oxide (SiO2 or Si-O-N) underlayers. J. Appl. Phys., 92 (2002) 7168-7174. https://doi.org/10.1063/1.1522811
- Y. Han, H. Duan, C. Zhou, H. Meng, Q. Jiang, B. Wang, W. Yan, R. Zhang, Stabilizing cobalt single atoms via flexible carbon membranes as bifunctional electrocatalysts for binder-free zinc-air Batteries, Nano Lett., 22 (2022) 2497-2505. https://doi.org/10.1021/acs.nanolett.2c00278
- 김호현, Discrete Feeding Method 활용을 통한 Hf1-xZrxO2 박막의 전기적 특성 향상 연구, 서울대학교 대학원, 서울, (2020) 44, 75
- Suraj S Cheema et al, Ultrathin ferroic HfO2-ZrO2 superlattice gate stack for advanced transistors, Nature 604 (2022) 65-71. https://doi.org/10.1038/s41586-022-04425-6
- D. Lehninger, R. Olivo, T. Ali, M. Lederer, T. Kampfe, C. Mart, K. Biedermann, K. Kuhnel, L. Roy, M. Kalkani, K. Seidel, Back-end-of-line compatible low-temperature furnace anneal for ferroelectric hafnium zirconium oxide formation, Phys. Status Solidi, A 217 (2020) 1900840. https://doi.org/10.1002/pssa.201900840
- Y. Lee, S. M. George, Thermal atomic layer etching of HfO2 using HF for fluorination and TiCl4 for ligand-exchange, J. Vac. Sci. Technol., A 36 (2018) 061504 . https://doi.org/10.1116/1.5045130
- M. Hoffmann, J. A. Murdzek, S. M. George, S. Slesazeck, U. Schroeder, T. Mikolajick, Atomic layer etching of ferroelectric hafnium zirconium oxide thin films enables giant tunneling electroresistance, Appl. Phys. Lett, 120 (2022) 122901. https://doi.org/10.1063/5.0084636
- N. Gong, T. P. Ma, A study of endurance issues in HfO2-based ferroelectric field effect transistors: charge trapping and trap generation, IEEE Electron Device Lett., 39 (2018) 15-18. https://doi.org/10.1109/LED.2017.2776263
- K. Ni, P. Sharma, J. Zhang, M. Jerry, J. A. Smith, K. Tapily, R. Clark, S. Mahapatra, S. Datta, Critical role of interlayer in Hf0.5Zr0.5O2 ferroelectric FET nonvolatile memory performance, IEEE Trans. Electron Devices, 65 (2018) 2461-2469. https://doi.org/10.1109/TED.2018.2829122
- T. Ali, P. Polakowski, S. Riedel, T. Buttner, T. Kampfe, M. Rudolph, B. Patzold, K. Seidel, D. Lohr, R. Hoffmann, M. Czernohorsky, K. Kuhnel, P. Steinke, J. Calvo, K. Zimmermann, J. Muller, High endurance ferroelectric hafnium oxide-based FeFET memory without retention penalty, IEEE Trans. Electron Devices, 65 (2018) 3769-3774. https://doi.org/10.1109/TED.2018.2856818
- A. J. Tan, Y. H. Liao, L. C. Wang, N. Shanker, J. H. Bae, C. Hu, S. Salahuddin, Ferroelectric HfO2 memory transistors with High-κ interfacial layer and write endurance exceeding 1010 cycles, IEEE Electron Device Lett., 42 (2021) 994-997. https://doi.org/10.1109/LED.2021.3083219
- C. Y. Chan, K. Y. Chen, H. K. Peng, Y. H. Wu, FeFET memory featuring large memory window and robust endurance of long-pulse cycling by interface engineering using high-k AlON, 2020 Symp. VLSI Technol., (2020) 1-2.
- S. H. Kim, G. T. Yu, G. H. Park, D. H. Lee, J. Y. Park, K. Yang, E. B. Lee, J. I. Lee, M. H. Park, Interfacial engineering of a Mo/Hf0.3Zr0.7O2/Si capacitor using the direct scavenging effect of a thin Ti layer, Chem. Commun, 57 (2021), 12452-12455. https://doi.org/10.1039/D1CC04966F
- Y. Lee, H. A. Hsain, S. S. Fields, S. T. Jaszewski, M. D. Horgan, P. G. Edgington, J. F. Ihlefeld, G. N. Parsons, J. L. Jones, Unexpectedly large remanent polarization of Hf0.5Zr0.5O2 metal-ferroelectric-metal capacitor fabricated without breaking vacuum, Appl. Phys. Lett., 118 (2021) 012903. https://doi.org/10.1063/5.0029532
- Y. Liang et al., ZrO2-HfO2 superlattice ferroelectric capacitors with optimized annealing to achieve extremely high holarization stability, IEEE Electron Device Lett., 43 (2022) 1451-1454. https://doi.org/10.1109/LED.2022.3193383
- G. N. Parsons, R. D. Clark, Area-selective deposition: fundamentals, applications, and future outlook, Chem. Mater., 32 (2020) 4920-4953. https://doi.org/10.1021/acs.chemmater.0c00722