• Title/Summary/Keyword: Remote Sensing Imagery

Search Result 822, Processing Time 0.022 seconds

Line Based Transformation Model (LBTM) for high-resolution satellite imagery rectification

  • Shaker, Ahmed;Shi, Wenzhong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.225-227
    • /
    • 2003
  • Traditional photogrammetry and satellite image rectification technique have been developed based on control-points for many decades. These techniques are driven from linked points in image space and the corresponding points in the object space in rigorous colinearity or coplanarity conditions. Recently, digital imagery facilitates the opportunity to use features as well as points for images rectification. These implementations were mainly based on rigorous models that incorporated geometric constraints into the bundle adjustment and could not be applied to the new high-resolution satellite imagery (HRSI) due to the absence of sensor calibration and satellite orbit information. This research is an attempt to establish a new Line Based Transformation Model (LBTM), which is based on linear features only or linear features with a number of ground control points instead of the traditional models that only use Ground Control Points (GCPs) for satellite imagery rectification. The new model does not require any further information about the sensor model or satellite ephemeris data. Synthetic as well as real data have been demonestrated to check the validity and fidelity of the new approach and the results showed that the LBTM can be used efficiently for rectifying HRSI.

  • PDF

A Comparative Study of Geocoding Methods for Radarsat Image - According to the DEM Resolutions - (Radarsat 영상의 기하보정 방법에 대한 비교 연구 - DEM 해상도에 따라 -)

  • 한동엽;박민호;김용일
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.1
    • /
    • pp.69-82
    • /
    • 1998
  • SAR imagery can overcome the limitations of electro-optical sensor imagery and provide us Information which plays a supplementary role. But it is necessary to remove a variety of geometric errors in SAR imagery. An accurate geometric correction of SAR imagery is not easy task to achieve, though some techniques and theories are introduced. We also have difficulties such as transformation problem between 'International' ellipsoid in Radarsat system and 'Bessel' ellipsoid. Two widely used correction method, one is made by simulated image, and the other by collinearity equation, usually use DEM. In this study, the merits and demerits of geocoding methods respectively and the effective method for Korean terrain were found.

Development of HDF Browser for the Utilization of EOC Imagery

  • Seo, Hee-Kyung;Ahn, Seok-Beom;Park, Eun-Chul;Hahn, Kwang-Soo;Choi, Joon-Soo;Kim, Choen
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.1
    • /
    • pp.61-69
    • /
    • 2002
  • The purpose of Electro-Optical Camera (EOC), the primary payload of KOMPSAT-1, is to collect high resolution visible imagery of the Earth including Korean Peninsula. EOC images will be distributed to the public or many user groups including government, public corporations, academic or research institutes. KARI will offer the online service to the users through internet. Some application, e.g., generation of Digital Elevation Model (DEM), needs a secondary data such as satellite ephemeris data, attitude data to process the EOC imagery. EOC imagery with these ancillary information will be distributed in a file of Hierarchical Data Format (HDF) file formal. HDF is a physical file format that allows storage of many different types of scientific data including images, multidimensional data arrays, record oriented data, and point data. By the lack of public domain softwares supporting HDF file format, many public users may not access EOC data without difficulty. The purpose of this research is to develop a browsing system of EOC data for the general users not only for scientists who are the main users of HDF. The system is PC-based and huts user-friendly interface.

A Study on Aerial Triangulation from Multi-Sensor Imagery

  • Lee, Young-Ran;Habib, Ayman;Kim, Kyung-Ok
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.3
    • /
    • pp.255-261
    • /
    • 2003
  • Recently, the enormous increase in the volume of remotely sensed data is being acquired by an ever-growing number of earth observation satellites. The combining of diversely sourced imagery together is an important requirement in many applications such as data fusion, city modeling and object recognition. Aerial triangulation is a procedure to reconstruct object space from imagery. However, since the different kinds of imagery have their own sensor model, characteristics, and resolution, the previous approach in aerial triangulation (or georeferencing) is purformed on a sensor model separately. This study evaluated the advantages of aerial triangulation of large number of images from multi-sensors simultaneously. The incorporated multi-sensors are frame, push broom, and whisky broom cameras. The limits and problems of push-broom or whisky broom sensor models can be compensated by combined triangulation with other sensors The reconstructed object space from multi-sensor triangulation is more accurate than that from a single model. Experiments conducted in this study show the more accurately reconstructed object space from multi-sensor triangulation.

An Open Standard-based Terrain Tile Production Chain for Geo-referenced Simulation

  • Yoo, Byoung-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.497-506
    • /
    • 2008
  • The needs for digital models of real environment such as 3D terrain or cyber city model are increasing. Most of applications related with modeling and simulation require virtual environment constructed from geospatial information of real world in order to guarantee reliability and accuracy of the simulation. The most fundamental data for building virtual environment, terrain elevation and orthogonal imagery is acquired from optical sensor of satellite or airplane. Providing interoperable and reusable digital model is important to promote practical application of high-resolution satellite imagery. This paper presents the new research regarding representation of geospatial information, especially for 3D shape and appearance of virtual terrain. and describe framework for constructing real-time 3D model of large terrain based on high-resolution satellite imagery. It provides infrastructure of 3D simulation with geographical context. Web architecture, XML language and open protocols to build a standard based 3D terrain are presented. Details of standard-based approach for providing infrastructure of real-time 3D simulation using high-resolution satellite imagery are also presented. This work would facilitate interchange and interoperability across diverse systems and be usable by governments, industry scientists and general public.

Support Vector Machine Classification Using Training Sets of Small Mixed Pixels: An Appropriateness Assessment of IKONOS Imagery

  • Yu, Byeong-Hyeok;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.507-515
    • /
    • 2008
  • Many studies have generally used a large number of pure pixels as an approach to training set design. The training set are used, however, varies between classifiers. In the recent research, it was reported that small mixed pixels between classes are actually more useful than larger pure pixels of each class in Support Vector Machine (SVM) classification. We evaluated a usability of small mixed pixels as a training set for the classification of high-resolution satellite imagery. We presented an advanced approach to obtain a mixed pixel readily, and evaluated the appropriateness with the land cover classification from IKONOS satellite imagery. The results showed that the accuracy of the classification based on small mixed pixels is nearly identical to the accuracy of the classification based on large pure pixels. However, it also showed a limitation that small mixed pixels used may provide insufficient information to separate the classes. Small mixed pixels of the class border region provide cost-effective training sets, but its use with other pixels must be considered in use of high-resolution satellite imagery or relatively complex land cover situations.

Improving Urban Vegetation Classification by Including Height Information Derived from High-Spatial Resolution Stereo Imagery

  • Myeong, Soo-Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.5
    • /
    • pp.383-392
    • /
    • 2005
  • Vegetation classes, especially grass and tree classes, are often confused in classification when conventional spectral pattern recognition techniques are used to classify urban areas. This paper reports on a study to improve the classification results by using an automated process of considering height information in separating urban vegetation classes, specifically tree and grass, using three-band, high-spatial resolution, digital aerial imagery. Height information was derived photogrammetrically from stereo pair imagery using cross correlation image matching to estimate differential parallax for vegetation pixels. A threshold value of differential parallax was used to assess whether the original class was correct. The average increase in overall accuracy for three test stereo pairs was $7.8\%$, and detailed examination showed that pixels reclassified as grass improved the overall accuracy more than pixels reclassified as tree. Visual examination and statistical accuracy assessment of four test areas showed improvement in vegetation classification with the increase in accuracy ranging from $3.7\%\;to\;18.1\%$. Vegetation classification can, in fact, be improved by adding height information to the classification procedure.

Spatial Pattern Analysis of High Resolution Satellite Imagery: Level Index Approach using Variogram

  • Yoo, Hee-Young;Lee, Ki-Won;Kwon, Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.357-366
    • /
    • 2006
  • A traditional image analysis or classification method using satellite imagery is mostly based on the spectral information. However, the spatial information is more important according as the resolution is higher and spatial patterns are more complex. In this study, we attempted to compare and analyze the variogram properties of actual high resolution imageries mainly in the urban area. Through the several experiments, we have understood that the variogram is various according to a sensor type, spatial resolution, a location, a feature type, time, season and so on and shows the information related to a feature size. With simple modeling, we confirmed that the unique variogram types were shown unlike the classical variogram in case of small subsets. Based on the grasped variogram characteristics, we made a level index map for determining urban complexity or land-use classification. These results will become more and more important and be widely applied to the various fields of high-resolution imagery such as KOMPSAT-2 and KOMPSAT-3 which is scheduled to be launched.

Atmospheric Aerosol Detection And Its Removal for Satellite Data

  • Lee, Dong-Ha;Lee, Kwon-Ho;Kim, Young-Joan
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.379-383
    • /
    • 2006
  • Satellite imagery may contain large regions covered with atmospheric aerosol. A highresolution satellite imagery affected by non-homogenous aerosol cover should be processed for land cover study and perform the radiometric calibration that will allow its future application for Korea Multi-Purpose Satellite (KOMPSAT) data. In this study, aerosol signal was separated from high resolution satellite data based on the reflectance separation method. Since aerosol removal has a good sensitivity over bright surface such as man-made targets, aerosol optical thickness (AOT) retrieval algorithm could be used. AOT retrieval using Look-up table (LUT) approach for utilizing the transformed image to radiometrically compensate visible band imagery is processed and tested in the correction of satellite scenery. Moderate Resolution Imaging Spectroradiometer (MODIS), EO-l/HYPERION data have been used for aerosol correction and AOT retrieval with different spatial resolution. Results show that an application of the aerosol detection for HYPERION data yields successive aerosol separation from imagery and AOT maps are consistent with MODIS AOT map.

Cloud Cover Analysis from the GMS/S-VISSR Imagery Using Bispectral Thresholds Technique (GMS/S-VISSR 자료로부터 Bispectral Thresholds 기법을 이용한 운량 분석에 관하여)

  • 서명석;박경윤
    • Korean Journal of Remote Sensing
    • /
    • v.9 no.1
    • /
    • pp.1-19
    • /
    • 1993
  • A simple bispectral threshold technique which reflects the temporal and spatial characteristics of the analysis area has been developed to classify the cloud type and estimate the cloud cover from GMS/S-VISSR(Stretched Visible and Infrared Spin Scan Radiometer) imagery. In this research, we divided the analysis area into land and sea to consider their different optical properties and used the same time observation data to exclude the solar zenith angle effects included in the raw data. Statistical clear sky radiance(CSRs) was constructed using maximum brightness temperature and minimum albedo from the S-VISSR imagery data during consecutive two weeks. The CSR used in the cloud anaysis was updated on the daily basis by using CSRs, the standard deviation of CSRs and present raw data to reflect the daily variation of temperature. Thresholds were applied to classify the cloud type and estimate the cloud cover from GMS/S-VISST imagery. We used a different thresholds according to the earth surface type and the thresholds were enough to resolve the spatial variation of brightness temperature and the noise in raw data. To classify the ambiguous pixels, we used the time series of 2-D histogram and local standard deviation, and the results showed a little improvements. Visual comparisons among the present research results, KMA's manual analysis and observed sea level charts showed a good agreement in quality.