• Title/Summary/Keyword: Relative stability

Search Result 914, Processing Time 0.033 seconds

The Effect Analysis of Postural Stability on the Inter-Segmental Spine Motion according to Types of Trunk Models in Drop Landing (드롭착지 동작 시 체간모델에 따른 척추분절운동이 자세안정성 해석에 미치는 영향)

  • Yoo, Kyoung-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.375-383
    • /
    • 2014
  • The purpose of this study was to assess the inter-segmental trunk motion during which multi-segmental movements of the spinal column was designed to interpret the effect of segmentation on the total measured spine motion. Also it analyzed the relative motion at three types of the spine models in drop landing. A secondary goal was to determine the intrinsic algorithmic errors of spine motion and the usefulness of such an approach as a tool to assess spinal motions. College students in the soccer team were selected the ten males with no history of spine symptoms or injuries. Each subject was given a fifteen minute adaptation period of drop landing on the 30cm height box. Inter-segmental spine motion were collected Vicon Motion Capture System (250 Hz) and synchronized with GRF data (1000 Hz). The result shows that Model III has a more increased range of motion (ROM) than Model I and Model II. And the Lagrange energy has significant difference of at E3 and E4 (p<.05). This study can be concluded that there are differences in the three models of algorithm during the phase of load absorption. Especially, Model III shows proper spine motion for the inter-segmental joint motion with the interaction effects using the seven segments. Model III shows more proper observed values about dynamic equilibrium than Model I & Model II. The findings have shown that the dynamic stability strategy of Model III toward multi-directional spinal motion supports for better function of the inter-segmental motor-control than the Model I and Model II.

Exact Tangent Stiffness Matrix and Buckling Analysis Program of Plane Frames with Semi-Rigid Connections (부분강절로 연결된 평면뼈대구조의 엄밀한 접선강도행렬 및 안정성 해석프로그램 개발)

  • Min, Byoung Cheol;Kyung, Yong Soo;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.81-92
    • /
    • 2008
  • Generally the connection of members is defined as hinge or rigid. But, real joints on structure have to be considered semi-rigid connections because this permits relative rotation for members on joints. The purpose of this study is to derive a generalized tangential stiffness matrix of frames with semi-rigid connections and to develop a buckling analysis program. For the exact stiffness matrix, an accurate displacement field is introduced using an equilibrium equation for beam-columns under the bending and axial forces. Also, stability functions that consider sway deformation and force-displacement relations with rotational spring on ends were defined. In order to illustrate the accuracy of this study and the characteristics of semi-rigid for system buckling load, samples of angle-, portal- and 3-story frames with semi-rigid connections are presented, where the proposed approach is found to be in excellent agreement with other research results. Meanwhile, the application of codes such as Eurocode 3 and LRFD led to significant inaccuracies.

Study on failure behaviors of mixed-mode cracks under static and dynamic loads

  • Zhou, Lei;Chen, Jianxing;Zhou, Changlin;Zhu, Zheming;Dong, Yuqing;Wang, Hanbing
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.567-582
    • /
    • 2022
  • In the present study, a series of physical experiments and numerical simulations were conducted to investigate the effects of mode I and mixed-mode I/II cracks on the fracture modes and stability of roadway tunnel models. The experiments and simulations incorporated different inclination angle flaws under both static and dynamic loads. The quasi-static and dynamic testing were conducted by using an electro-hydraulic servo control device and drop weight impact system (DWIS), and the failure process was simulated by using rock failure process analysis (RFPA) and AUTODYN software. The stress intensity factor was also calculated to evaluate the stability of the flawed roadway tunnel models by using ABAQUS software. According to comparisons between the test and numerical results, it is observed that for flawed roadways with a single radical crack and inclination angle of 45°, the static and dynamic stability are the lowest relative to other angles of fractured rock masses. For mixed-mode I/II cracks in flawed roadway tunnel models under dynamic loading, a wing crack is produced and the pre-existing cracks increase the stress concentration factor in the right part of the specimen, but this factor will not be larger than the maximum principal stress region in the roadway tunnel models. Additionally, damage to the sidewalls will be involved in the flawed roadway tunnel models under static loads.

Experiments on Stability of Armor Rocks on Rear Slope of Rubble Mound Structures under Wave Overtopping Condition with Rectangular Crest Element (월파조건에서 직사각형 상치콘크리트가 설치된 경사제 항내측 사면에 거치된 피복석의 안정성 실험)

  • Young-Taek Kim;Jong-In Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.5
    • /
    • pp.102-108
    • /
    • 2023
  • In this study, hydraulic model tests were performed to investigate the stability of armor units at harbor side slope for rubble mound structures. The armor units on the rear slope were rocks. The Korean design standard for harbor and fishery port suggested the design figures that showed the ratio of the armor weight for each location of rubble mound structures and it could be known that the same weight ratio was needed to the sea side and rear side slope of rubble mound structures. The crest elements were commonly applied to the design process of rubble mound structures in Korea and the investigation of the effects of super structures would be needed. The damage rate (S =2) was applied and the stable wave height was measured for each test condition. The results were suggested as the armor weight ratio of the rear side slope(armor rock) to the sea side slope (tetrapod) in relation to the relative crest height.

Study on Explosion Characteristics and Thermal Stability of Activated Carbon (활성탄의 폭발특성과 열안정성에 관한 연구)

  • Yi-Rac Choi;Dong-Hyun Seo;Ou-Sup Han;Hyo-Geun Cha
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.134-140
    • /
    • 2023
  • Activated carbon is a carbonaceous material mainly used as a gaseous or liquid adsorbent. As fire-related accidents occur consistently due to the accumulation of heat of adsorption and oxidation of volatile organic compounds, the explosive characteristics and thermal stability of powdered and granular activated carbon made from coal and coconut shells were evaluated. As a result of the particle size analysis, the powdered activated carbon was in the particle size range (0.4~3) ㎛, and thermal properties such as exothermic onset temperature and decomposition behavior were analyzed using a differential scanning calorimetry and a thermogravimetric analysis. As a result of the evaluation of the explosion hazards for dust, both coal-based and coconut-based powdered activated carbon are classified as St1 class with weak explosion, but this is a relative and does not mean that the explosion hazards is absolutely low. Therefore, it is necessary to establish countermeasures for reducing the damage.

Dynamic Relative Displacement of Geosynthetic-Soil Interface Considering Chemical Effect (화학적 영향을 고려한 토목섬유-지반 접촉면의 동적상대변위)

  • Kwak, Chang-Won;Oh, Myoung-Hak;Jang, Dong-In;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.73-81
    • /
    • 2016
  • Recently, the construction of onshore waste landfill sites has been studied due to the increase of waste and geosynthetics are widely utilized to enforce and protect waste landfill. Geosynthetics comprises the interface with soil and the seismic behavior and stability mostly depend on the dynamic shear behavior of the geosynthetic-soil interface. Therefore, the understanding of dynamic shear behavior and dynamic relative displacement of the interface is critical. The dynamic shear behavior of the interface is affected by surrounding conditions and loading and shows very complicated response, and, it is difficult to study theoretically. In this study, laboratory test to investigate dynamic relative displacement is performed under chemical condition. Dynamic interface apparatus is utilized and cyclic simple shear tests are conducted under short term (60 days of submerging period) and long term (840 days of submerging period) conditions. Consequently, relative displacement of the interface shows the largest values under acid condition, which means more severe damage of the interface.

The Effects of Trunk Stability Exercise on Knee function, Balance, Gait in patients after Total Knee Arthroplasty (체간 안정화 운동이 무릎관절 전치환술 환자의 무릎기능, 균형, 보행에 미치는 영향)

  • Lee, Jae-Hong;Min, Dong-Ki;Lee, Sang-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.422-428
    • /
    • 2018
  • This study was conducted to investigate the effects of trunk stability exercise on knee function, balance and gait in patients who underwent total knee arthroplasty. The subjects of this study were recruited from individuals diagnosed with degenerative arthritis who had undergone total knee arthroplasty. Overall, 24 patients were randomly divided into a control groups and an experimental groups (12 each). The trunk stability exercise was conducted for 4 weeks with three exercises developed in a previous study. The measurement tools used were knee function measurements based on the Lysholm knee score, balance ability measured using a test of TUG and OLS, and a walking ability test measured using a 10MWT. Pre and post test results were within groups were compared using the paired t-test, whole differences between groups were compared using the independent t-test. The experimental group showed significantly enhanced results relative to the control group (p<0.05). Based on these results, trunk stability exercise in parallel with knee joint therapy effectively improves the recovery of patients with total knee arthroplasty.

Extraction properties and chemical stability of turmeric pigments in salt, sucrose, and acetic acid preservation (염, 당, 산 침지조건에서 심황색소의 추출특성 및 화학적 특성 변화)

  • Kang, Smee;Sung, Yunkyung;Hong, Jungil
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.19-25
    • /
    • 2020
  • Turmeric pigments have been used as coloring agents and functional ingredients. In this study, the extraction property and chemical stability of the pigments were evaluated in several preservative solutions containing NaCl, sucrose, and acetic acid. After 72 h of infusion, the protein and polyphenol levels and antioxidant activity of the turmeric extracts in the solutions were less pronounced than those in water. Acetic acid (12%) was more efficient at extracting curcuminoids from turmeric than water, NaCl (20%), or sucrose (25%). Curcumin was highly abundant in all solutions. The relative yield of bisdemethoxycurcumin (BMC) was the highest in acetic acid, whereas that of curcumin was highest in NaCl and sucrose solutions. Curcuminoids were relatively stable in sucrose and acetic acid; among them, BMC had the highest stability. The stability of the curcuminoid solution decreased based on the increase in NaCl content, whereas it was significantly enhanced in sucrose and acetic acid. The observations from this study can be applied to the processing and storage of turmeric-derived products in these preservative agents.

Numerical Analysis on Stress Distribution of Vertebra and Stability of Intervertebral Fusion Cage with Change of Spike Shape (척추체간 유합케이지의 스파이크형상 변화에 따른 척추체의 응력분포 및 케이지의 안정성에 대한 수치적 해석)

  • 심해영;김철생;오재윤
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.361-367
    • /
    • 2004
  • The axial compressive strength, relative 3-D stability and osteoconductive shape design of an intervertebral fusion cage are important biomechanical factors for successful intervertebral fusion. Changes in the stress distribution of the vertebral end plate and in cage stability due to changes in the spike shape of a newly contrived box-shaped fusion cage are investigated. In this investigation, the initial contact of the cage's spikes with the end plate and the penetration of the cage's spikes into the end plate are considered. The finite element analysis is conducted to study the effects of the cage's spike height, tip width and angle on the stress distribution of the vertebral end plate, and the micromigration of the cage in the A-P direction. The stress distribution in the end plate is examined when a normal load of 1700N is applied to the vertebra after inserting 2 cages. The micromigration of the cage is examined when a pull out load of l00N is applied in the A-P direction. The analysis results reveal that the spike tip width significantly influences the stress concentration in the end plate, but the spike height and angle do not significantly influence the stress distribution in the end plate touching the cage's spikes. In addition, the analysis results show that the micromigration of the cage can be reduced by adjusting the spike angle and spike arrangement in the A-P direction. This study proposes the optimal shape of an intervertebral fusion cage, which promotes bone fusion, reduces the stress concentration in a vertebral end plate, and increases mechanical stability.

Relative Effectiveness of Some Antioxidants on Storage Stability of Instant Noodle(Ramyon) Fried by Palm Oil and Beef Tallow (팜유와 우지로 제조한 라면의 저장 안정성에 대한 산화방지제 효과의 비교)

  • Yang, Joo-Hong;Chang, Young-Sang;Shin, Hyo-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.569-575
    • /
    • 1988
  • Storage stabilities of ramyons fried in palm oil and beef tallow with added antioxidants and their synergists were investigated by comparing the changes in physicochemical parameters and n-hexanal concentrations of oils extracted from ramyons during storage. Ramyons fried in palm oil and beef tallow with added ${\delta}-tocopherol$ $({\delta}-toc)$ showed an enhanced storage stabilities when compared to those fried in the oils with ${\alpha}-tocopherol$ $({\alpha}-toc)$. Ascorbyl palmitate was found to be a better synergist than citric acid for the antioxidant activity of both ${\delta}-toc\;and\;{\alpha}-toc$. Phenolic antioxidants gave a better storage stability than tocopherol when ramyon was fried in beef tallow, while a mixture of BHA and BHT gave an inferior storage stability than${\alpha}-toc$ when ramyon was fried in palm oil. The effectiveness of the antioxidants tested on storage stability of stored ramyon had a close relationship to the n-hexanal concentration. On the other hand, the paramenters such as peroxide value, carbonly value, and conjugated diene concentration showed inconsistency during the course of the storage experiment.

  • PDF