DOI QR코드

DOI QR Code

Extraction properties and chemical stability of turmeric pigments in salt, sucrose, and acetic acid preservation

염, 당, 산 침지조건에서 심황색소의 추출특성 및 화학적 특성 변화

  • Kang, Smee (Division of Applied Food System, College of Natural Science, Seoul Women's University) ;
  • Sung, Yunkyung (Division of Applied Food System, College of Natural Science, Seoul Women's University) ;
  • Hong, Jungil (Division of Applied Food System, College of Natural Science, Seoul Women's University)
  • 강스미 (서울여자대학교 자연과학대학 식품응용시스템학부) ;
  • 성연경 (서울여자대학교 자연과학대학 식품응용시스템학부) ;
  • 홍정일 (서울여자대학교 자연과학대학 식품응용시스템학부)
  • Received : 2019.11.01
  • Accepted : 2019.12.26
  • Published : 2020.02.29

Abstract

Turmeric pigments have been used as coloring agents and functional ingredients. In this study, the extraction property and chemical stability of the pigments were evaluated in several preservative solutions containing NaCl, sucrose, and acetic acid. After 72 h of infusion, the protein and polyphenol levels and antioxidant activity of the turmeric extracts in the solutions were less pronounced than those in water. Acetic acid (12%) was more efficient at extracting curcuminoids from turmeric than water, NaCl (20%), or sucrose (25%). Curcumin was highly abundant in all solutions. The relative yield of bisdemethoxycurcumin (BMC) was the highest in acetic acid, whereas that of curcumin was highest in NaCl and sucrose solutions. Curcuminoids were relatively stable in sucrose and acetic acid; among them, BMC had the highest stability. The stability of the curcuminoid solution decreased based on the increase in NaCl content, whereas it was significantly enhanced in sucrose and acetic acid. The observations from this study can be applied to the processing and storage of turmeric-derived products in these preservative agents.

본 연구에서는 염, 당, 초산에 의한 가공, 저장, 조리 방법을 적용하여 NaCl, sucrose 및 acetic acid 등 3가지 용액에 강황을 침지시켜 추출물의 화학적 특성 및 쿠쿠미노이드 성분의 추출 정도를 분석하였다. NaCl (0-20%), sucrose (0-25%) 및 acetic acid (0-12%) 용액에서 강황분말을 3일간 침지한 결과, 단백질과 폴리페놀의 용출량, 용출액의 산화방지 효과는 물 추출에 비해 감소하였으나 acetic acid (12%) 용액에서 황색도와 쿠쿠미노이드 색소의 추출량은 현저히 증가하였다. 또한 각 침지용매에 심황색소를 분산시켜 쿠쿠미노이드 성분의 화학안정성과 분산안정성 등을 분석하였다. 심황색소의 잔류량은 NaCl (20%)에서 20%정도로 현저히 감소하였으나 sucrose (25%)와 acetic acid (12%) 침지액에서는 각각 88.6, 91.6%가 유지되었다. 심황색소의 sucrose 침지액 상에서는 저장시간과 sucrose 농도에 따라 H2O2의 양이 유의적으로 증가하였다. 한편 각 침지용매 상에서 분산안정성을 평가한 결과 NaCl 농도의 증가에 따라 심황색소의 용해도가 감소하였으나, sucrose와 acetic acid 상에서는 이들의 농도 증가에 따라 심황색소 용액의 분산 안정성이 유의적으로 증가하였다. 본 연구는 NaCl, sucrose 및 acetic acid 용매에서 심황색소의 화학안정성과 분산안정성의 화학적 행태에 대한 결과를 제공하며, 이러한 성질이 해당 용매를 이용한 강황의 가공, 저장, 조리 등의 처리에서 고려되어야 함을 시사한다.

Keywords

References

  1. Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res. 23: 363-398 (2003)
  2. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol. Pharmaceut. 4: 807-818 (2007) https://doi.org/10.1021/mp700113r
  3. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200 (1958) https://doi.org/10.1038/1811199a0
  4. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal. Biochem. 72: 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  5. Fujisawa S, Atsumi T, Ishihara M, Kadoma Y. Cytotoxicity, ROS-generation activity and radical-scavenging activity of curcumin and related compounds. Anticancer Res. 24: 563-570 (2004)
  6. Goel A. Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Lett. 172: 111-118 (2001) https://doi.org/10.1016/S0304-3835(01)00655-3
  7. Govindarajan VS, Stahl WH. Turmeric-chemistry, technology, and quality. Crit. Rev. Food. Sci. 12: 199-301 (1980) https://doi.org/10.1080/10408398009527278
  8. Hong J, Bose M, Ju J, Ryu JH, Chen X, Sang S, Lee MJ, Yang CS. Modulation of arachidonic acid metabolism by curcumin and related beta-diketone derivatives: effects on cytosolic phospholipase A2, cyclooxygenases and 5-lipoxygenase. Carcinogenesis 25:1671-1679 (2004) https://doi.org/10.1093/carcin/bgh165
  9. Jagannathan R, Abraham PM, Poddar P. Temperature-dependent spectroscopic evidences of curcumin in aqueous medium: a mechanistic study of its solubility and stability. J. Phys. Chem. B 116: 14533-14540 (2012) https://doi.org/10.1021/jp3050516
  10. Jung YN, Kang S, Lee BH, Kim JH, Hong J. Changes in the chemical properties and anti-oxidant activities of curcumin by microwave radiation. Food Sci. Biotechnol. 5: 1449-1455 (2016)
  11. Lee BH, Kim DR, Kang S, Kim MR, Hong J. Changes in the chemical stability and antioxidant activities of curcuminoids under various processing conditions. Korean J. Food Sci. Technol. 42: 97-102 (2010)
  12. Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci. 21: 8370-8377 (2001) https://doi.org/10.1523/JNEUROSCI.21-21-08370.2001
  13. Masuda T, Hidaka K, Shinohara A, Maekawa T, Takeda Y, Yamaguchi H. Chemical studies on antioxidant mechanism of curcuminoid: analysis of radical reaction products from curcumin. J. Agr. Food Chem. 47: 71-77 (1999) https://doi.org/10.1021/jf9805348
  14. Metzler M, Pfeiffer E, Schulz SI, Dempe JS. Curcumin Uptake and Metabolism. Biofactors 39: 14-20 (2013) https://doi.org/10.1002/biof.1042
  15. Mohanty C, Sahoo SK. The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation. Biomaterials 31: 6597-6611 (2010) https://doi.org/10.1016/j.biomaterials.2010.04.062
  16. Nardo L, Paderno R, Andreoni A, Másson M, Haukvik T, Tonnesen HH. Role of H-bond formation in the photoreactivity of curcumin. J. Spectrosc. 22: 187-198 (2008) https://doi.org/10.1155/2008/928407
  17. Park KA, Choi Y, Kang S, Kim M, Hong J. Effects of proteins on the reactivity of various phenolic compounds with the Folin-Ciocalteu reagent. Korean J. Food Sci. Technol. 47: 299-305 (2015) https://doi.org/10.9721/KJFST.2015.47.3.299
  18. Roos B, Duthie GG. Role of dietary pro-oxidants in the maintenance of health and resilience to oxidative stress. Mol. Nutr. Food Res. 59: 1229-1248 (2015) https://doi.org/10.1002/mnfr.201400568
  19. Shim KB, Kim TJ, Ju JM, Cho YJ. Establishment of processing conditions of salted anchovy. J. Korean Fish. Soc. 34: 98-102 (2001)
  20. Song E, Hong J. Changes in chemical properties and cytotoxicity of turmeric pigments by microwave treatment. Korean J. Food Sci. Technol. 49: 693-698 (2017) https://doi.org/10.9721/KJFST.2017.49.6.693
  21. Song E, Kang S, Hong J. Changes in chemical properties, antioxidant activities, and cytotoxicity of turmeric pigments by thermal process. Korean J. Food Sci. Technol. 50: 21-27 (2018) https://doi.org/10.9721/KJFST.2018.50.1.21
  22. Sperber WH. Influence of water activity on foodborne bacteria-a review. J. Food Prot. 46: 142-150 (1983) https://doi.org/10.4315/0362-028X-46.2.142
  23. Sung Y, Son H, Hong J. Effects of an extrusion process on the chemical properties and pigment stability of turmeric. Korean J. Food Sci. Technol. 50: 457-463 (2018) https://doi.org/10.9721/KJFST.2018.50.5.457
  24. Tanvir EM, Hossen S, Hossain F, Afroz R, Gan SH, Khalil I, Karim N. Antioxidant properties of popular turmeric (Curcuma longa) varieties from Bangladesh. J. Food Quality Article ID 8471785 (2017)
  25. Tonnesen HH, Karlsen J, Henegouwen GB. Studies on curcumin and curcuminoids VIII. photochemical stability of curcumin. Z. Lebensm. Unters. Forsch. 183: 116-122 (1986) https://doi.org/10.1007/BF01041928