• 제목/요약/키워드: Relative Nodal Displacement

검색결과 4건 처리시간 0.018초

상대 절점 변위를 이용한 비선형 유한 요소 해석법 (A Relative Nodal Displacement Method for Element Nonlinear Analysis)

  • 김완구;배대성
    • 대한기계학회논문집A
    • /
    • 제29권4호
    • /
    • pp.534-539
    • /
    • 2005
  • Nodal displacements are referred to the initial configuration in the total Lagrangian formulation and to the last converged configuration in the updated Lagrangian furmulation. This research proposes a relative nodal displacement method to represent the position and orientation for a node in truss structures. Since the proposed method measures the relative nodal displacements relative to its adjacent nodal reference frame, they are still small for a truss structure undergoing large deformations for the small size elements. As a consequence, element formulations developed under the small deformation assumption are still valid for structures undergoing large deformations, which significantly simplifies the equations of equilibrium. A structural system is represented by a graph to systematically develop the governing equations of equilibrium for general systems. A node and an element are represented by a node and an edge in graph representation, respectively. Closed loops are opened to form a spanning tree by cutting edges. Two computational sequences are defined in the graph representation. One is the forward path sequence that is used to recover the Cartesian nodal displacements from relative nodal displacement sand traverses a graph from the base node towards the terminal nodes. The other is the backward path sequence that is used to recover the nodal forces in the relative coordinate system from the known nodal forces in the absolute coordinate system and traverses from the terminal nodes towards the base node. One open loop and one closed loop structure undergoing large deformations are analyzed to demonstrate the efficiency and validity of the proposed method.

상대절점좌표를 이용한 비선형 유한요소해석법 (A Relative for Finite Element Nonlinear Structural Analysis)

  • 강기랑;조희제;배대성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.788-791
    • /
    • 2005
  • Nodal displacements are referred to the Initial configuration in the total Lagrangian formulation and to the last converged configuration in the updated Lagrangian formulation. This research proposes a relative nodal displacement method to represent the position and orientation for a node in truss structures. Since the proposed method measures the relative nodal displacements relative to its adjacent nodal reference frame, they are still small for a truss structure undergoing large deformations for the small size elements. As a consequence, element formulations developed under the small deformation assumption are still valid fer structures undergoing large deformations, which significantly simplifies the equations of equilibrium. A structural system is represented by a graph to systematically develop the governing equations of equilibrium for general systems. A node and an element are represented by a node and an edge in graph representation, respectively. Closed loops are opened to form a spanning tree by cutting edges. Two computational sequences are defined in the graph representation. One is the forward path sequence that is used to recover the Cartesian nodal displacements from relative nodal displacements and traverses a graph from the base node towards the terminal nodes. The other is the backward path sequence that is used to recover the nodal forces in the relative coordinate system from the known nodal forces in the absolute coordinate system and traverses from the terminal nodes towards the base node. One closed loop structure undergoing large deformations is analyzed to demonstrate the efficiency and validity of the proposed method.

  • PDF

EFFICIENT COMPUTATION OF THE ACCELERATION OF THE CONTACT POINT BETWEEN ROTATING SURFACES AND APPLICATION TO CAM-FOLLOWER MECHANISM

  • LEE K.
    • International Journal of Automotive Technology
    • /
    • 제7권1호
    • /
    • pp.115-120
    • /
    • 2006
  • On a rotating contact surface of arbitrary shape, the relative velocity of the contact point sliding between the surfaces is computed with the basic geometries of the rotating surfaces, and the acceleration of the contact point between the contact surfaces is computed by using the relative velocity of the contact point. Thus the equation for the acceleration constraint between the contact surfaces in muitibody dynamics is not coupled with the parameters such as the relative velocity of the contact point. In case of the kinematic analysis, the acceleration of the contact point on any specific instant may also be efficiently computed by the present technique because the whole displacement of a full cycle need not be interpolated. Employing a cam-follower mechanism as a verification model, the acceleration of the contact point computed by the present technique is compared with that computed by differentiating the displacement interpolated with a large number of nodal points.

RMF을 이용한 계층적 B-spline 곡선의 다단계 편집기법 (Multilevel Editing for Hierarchical B-spline Curves using Rotation Minimizing Frames)

  • 장츠;윤승현;이지은
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제16권4호
    • /
    • pp.41-50
    • /
    • 2010
  • 본 논문에서는 계층적 B-spline곡선 (hierarchical B-spline curve)에 대한 새로운 다단계 편집 (multilevel editing)기법을 제안한다. 각 단계 변위함수 (displacement function)의 제어점 (control point)은 이전 단계 곡선위의 노드점 (nodal point)에서 계산되는 Rotation Minimizing Frame (RMF) [1]을 기준으로 표현된다. 이전 단계에서 곡선의 형상이 편집되면 해당노드 점에서 새로운 RMF가 계산되고, 현재 단계에서 변위함수의 제어점들은 새로운 RMF를 기준으로 적용되어, 현재 단계의 곡선은 이전 단계의 곡선에 대한 상대적인 세부 형상을 유지하게 된다. 본 논문에서는 다양한 형태의 곡선에 대한 다단계 편집실험을 통해 제안된 기법의 효율성과 안정성을 입증한다.