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ABSTRACT

Nodal displacements are referred to the initial configuration in the total Lagrangian formulation and to the last converged
configuration in the updated Lagrangian formulation. This research proposes a relative nodal displacement method to represent
the position and orientation for a node in truss structures. Since the proposed method measures the relative nodal displacements
relative to its adjacent nodal reference frame, they are still small for a truss structure undergoing large deformations for the
small size elements. As a consequence, element formulations developed under the small deformation assumption are still valid
for structures undergoing large deformations, which significantly simplifies the equations of equilibrium. A structural system is
represented by a graph to systematically develop the governing equations of equilibrium for general systems. A node and an
element are represented by a node and an edge in graph representation, respectively. Closed loops are opened to form a
spanning tree by cutting edges. Two computational sequences are defined in the graph representation. One is the forward path
sequence that is used to recover the Cartesian nodal displacements from relative nodal displacements and traverses a graph from
the base node towards the terminal nodes. The other is the backward path sequence that is used to recover the nodal forces in
the relative coordinate system from the known nodal forces in the absolute coordinate system and traverses from the terminal
nodes towards the base node. One closed loop structure undergoing large deformations is analyzed to demonstrate the

efficiency and validity of the proposed method.

1. Introduction

Geometrically nonlinear analyses have been
investigated by many researchers [1-4]. Their equations
of equilibrium are based on either the total Lagrangian
formulation or the updated Lagrangian formulation.
Avello referred kinematic variables relative to the initial
configuration and he expressed the strains in a moving
frame [5]. Therefore, the strains were invariant for finite
rigid body deformations. Shabana presented an absolute
nodal coordinate formulation for flexible multibody
dynamics [6,7]. Shimizu considered the rotary inertia
effects [8]. Bae has generalized a recursive formulation
for the rigid body dynamics [9,10]. The recursive
formulation has been further developed for the flexible
body dynamics and design sensitivity analysis [11,12]. In
this research, the recursive formulation is applied to
solve the geometric nonlinear problems in truss
structures undergoing large deformations. The proposed
formulation employs the moving reference frame
approach, which was proposed [13,14]. A moving
reference frame is introduced to represent a finite rigid
body motion. Deformation at a point of a flexible body
was super-imposed on the rigid body motion.

t A7 ggdgda
E-mail : kkrangl2@empal.com
Tel : (031) 501-2239

* FunctionBay, Inc

=+ SOt

2. Kinematics of relative nodal

displacement

2.1 Graph theoretic representation of a structure
This paper proposes a relative nodal displacement
method in formulating the equations of equilibrium.
Since the absolute nodal displacements are obtained by
accumulating the relative nodal displacements along a
path, element connectivity information must be identified
prior to generating the equations of equilibrium for a
truss structure. Therefore, the topology analysis must be
carried out for a structural system discretized into many
finite elements. The discretized systems can be
represented by a graph [10]. If a structure possesses a
loop in its graph theoretic representation, it is called as a
closed loop system. Otherwise, it is called as an open
loop system.
2.2 Kinematic definitions
Consider a system consisting of two beam finite
elements as shown in Fig. 1.
Nodes i—1 and [ are assumed to be inboard nodes of
nodes i and i+1
X-Y-Z is the

X, —Yi —Z, is the nodal reference frame attached to

in a graph, respectively. The

inertial reference frame and

anode k,and I, isa position vector of the node k.
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Forward path sequence

Y Backward path sequence

Fig. 1 Two finite beam elements and its graphic
representation

The X1y = Y-ni = Zg-ni is the reference frame

attached to a node i and the first subscript i—1
denotes the inboard node number of the second subscript
i. The relative nodal displacements measured in its
inboard nodal reference frame are solved in research.
The generalized coordinates for the relative nodal
position and orientation displacements of a node are

denoted by u;,_,),. and 9'(,._1),‘ , respectively. The
nodal position and orientation of node [ in the inertial
reference frame can be expressed in terms of these of

node i—1 and the relative nodal displacements as
follows:

ri = r([-—I) + A(l’-—l) (s'(f—l)io + u(l‘-—l)i) (1)
Ai = Ai—lD(i—I)i (G)‘(i—l)i)c(i—])i 2

In Egs. (1) and (2), A, denotes the orientation matrix

for node k in the initial reference frame, C(,._,)i

denotes the constant transformation matrix from

X;=¥i=2; 0 Xy = Yaoy " Za-ni » Su-nio
denotes the position vector of node | measured in
X(i-t) = ¥(i-1) ~ Z(-y in undeformed state, and u'(,._l),.
denotes the deformation vector of node I relative to the
nodal frame 7—1. D(H)[ is the transformation matrix
due to a rotational displacement of
Xicyi ™ Yi-ni ~Zgay; relative to the nodal frame
i-1.

Taking a variation of Egs. (1) and (2) yield

0L, = B(i-l)iléz(i—l) + B(i—l)i25q(i—1)i €)
where ‘
oz, =l sx7]" (k=i-1,) )
5q(i—l)i = [5“;11),' &);i{l)i] i €)

A(Ti—l)i 0

B - I —(E(i—l)io +ﬁ(i—1)i) 6
()Y 0 A(T 0 I (6)
i-1)i
B R ! %)
e 0 A(Ti—l)i H(i—l)i

Eq. (3) can be expressed in a compact matrix form as
follows.

§Z=B&q ®

3. Governing Equations of Equilibrium

3.1 Strain Energy

The strain energy in a finite element having multiple
nodes is affected only by the relative nodal
displacements relative to the inboard nodal frame of the
element and is free from its rigid body motion. As a
result, the variational form of the strain energy for a
system can be obtained in a summation form as

oW = Z5q(Tlc-1)kK(k-1)kq(k-x)k =54'Kq (9
=1

Since the stiffness matrix is generated in the nodal
reference frame, the strain energy due to a rigid body
motion of a node does not appear in Eq. (9). The element

stiffness matrix K, ,\, is contributed from linear and

nonlinear terms as [3]

L nlL
K(k—l)k = K(k—l)k + K(k—l)k (10

In Eq. (10), K(Lk_l)k denotes a linear stiffness matrix,

L . . :
K{i1)x denotes a nonlinear stiffness matrix.

3.2 External force

The virtual work done by both nodal forces Q
described in the absolute nodal coordinate system and

R described in the relative nodal coordinate system is
obtained as follows:

W =86L"Q+5q"R (1)

where OZ must be admissible for the kinematic
relationship between OZ and O&q . Substitution of

82 =Bdq into Eq. (11) yields
§W=5qT(BTQ+R)=6qTQ' (12)
3.3 Constraint

A nodal displacement is measured relative to its
inboard nodal frame in the proposed method. The
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relative nodal displacement can be defined only in
structures having a tree topology. Therefore, if a
structural system has a closed loop, it must be opened to
form the tree topology. A node in a closed loop is
removed and the corresponding cut constraint equations
of ®(q) are introduced to compensate for the removed

node.

3.4 Equations of equilibrium
For a closed loop system, the relative nodal
displacement q is not independent, and the ¢ must

satisfy the constraint as follows.

$(q)=0 (13)
Taking variation of the constraint equation yields
=% 6q=0 (14)

The Lagrange multiplier theorem can be applied to
obtain the following equations of equilibrium for a
constrained system:

é'qT(Kq—Q'+(D:)\)=O (15)

Since the &q is arbitrary, its coefficient must be zero,
which yields

F(g,A)=Kq+®]1-Q" =0 (16)

The unknown variables of ( and A can be obtained
by solving Egs. (13) and (16) simultaneously. The

unknown variables can be solved by using Newton-
Raphson method as -

F, oA F ,
4 a2 _ (17)
o, 0 (a1 |@

where F, =K+ (‘b :/1 - Q‘)q. By solving Eq. (17),

the improved solution of  for the next iteration can be
obtained as follows:

q=q+Aq (18)

By using Eqs. (17) and (18), the iteration continues until
the solution variance remains within a specified
allowable error tolerance.

4. Numerical Examples

Fig. 2 shows a closed loop system subjected to a
concentrated force F and moment M atapoint P.
When F=[3x10* -3x10*" [N] and M =3.0x10*
[N - m] are applied at the point P, the deformed shape
of the system is shown in the left of Fig. 3.

M B =3.0x10'[N/n?]
v=00
L=7.071[m]
A=0.01{m*]
I=0.002{m"]

Fig. 2 A closed loop system subjected to a
concentrated force and moment

It shows that the numerical results obtained by the
proposed method with 20 elements and a commercial
program ANSYS are almost identical. While the
proposed method converges after 7 iterations, ANSYS
converges after 12 iterations. When extreme loads
F=[5x10* -5%x10*" and M =5.0<10*[N * m] are
applied at the point P, the deformed shape of the
systern is shown in the right of Fig. 3. While the
proposed method converges after 11 iterations, ANSYS
did not converge. The numerical result indicates that as
the geometric nonlinearity becomes severe, the proposed
method performs much better than the conventional
method.

(F= B.0E+4, -3.0E+4][N], M=3.0E+4[Nm])
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Fig. 3 Comparison of deformed shapes of the closed
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5. Conclusions

A geometric nonlinear formulation for truss structures
undergoing large deformations is investigated in this
research. Nodal displacements in the proposed method
are referred to its adjacent nodal reference frame. Since
the nodal displacements are measured relative to its
inboard nodal frame, quantity of the nodal displacements
is still small for a structure undergoing large
deformations for the small element. Closed loops are
opened to form a tree topology by cutting nodes. A
solution algorithm is developed to implement the
proposed method. Nonlinear static analyses are
performed for truss structures undergoing large
deformations. To demonstrate the efficiency and validity
of the proposed method, one numerical example is
solved. A conventional linear element stiffness matrix is
used to form the equations of equilibrium. The analysis
results show that the proposed method has a better
convergence behavior than the conventional method.
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