• Title/Summary/Keyword: Reinforced soil

Search Result 737, Processing Time 0.023 seconds

Behavior of Reinforced Earth Retaining Wall for Connector System Driving the Settlement of Reinforcement (보강재 침하를 허용하는 연결시스템을 적용한 보강토옹벽의 거동)

  • Jong-Keun Oh;Jeong, Jong-Gi;Lee, Song
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.156-161
    • /
    • 2006
  • Recently, construction of soil-reinforced segmental retaining walls which used geosynthetics are being increased day by day due to its construction efficiency, economic efficiency, and its aesthetic view. The conventional reinforced earth retaining wall has the connector system to fix the reinforcement and block However, this system may cause the crack of block and the rupture of reinforcement due to the stress concentration near the face of reinforced earth retaining wall In this study, the new connector system, which is able to allow the settlement of reinforcement, was applied to analyze the effect of connector system of reinforced earth retaining wall The connection strength tests and centrifugal tests for both the conventional reinforced earth retaining wall and the settlement reinforced earth retaining wall were performed to compare the results

  • PDF

A Study on Rainfall-induced Erosion of Land Surface on Reinforced Slope Using Soil Improvement Material (지반 개량재에 의한 보강사면의 강우시 표면침식에 관한 연구)

  • Kim, You-Seong;Kim, Jae-Hong;Bhang, In-Hwang;Seo, Se-Gwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.49-59
    • /
    • 2013
  • Heavy rainfall intensity may cause shallow slope failures and debris flow by rill erosion and scour on land surface. The paper represents the difference between native soil (weathered soil) and reinforced soil, which is mixed by hardening agent with flyash as main material, for investigating experimental findings of rill erosion and erosion. Results obtained from artificial rainfall simulator show that erosion rate of reinforced soil mixed with hardening agent is reduced by 20% because an amount of eroded soil on slope surface is inversely proportional to the increase of soil strength. For example, rainfall of 45mm (at the elapsed time of 25mins in rainfall intensity of 110mm/hr) triggers rill erosion on native soil surface, but the rill erosion on reinforced soil surface does not even occur at 330mm rainfall (at the elapsed time of 3hrs in rainfall intensity of 110mm/hr). As a result of slope stability analysis, it was found that the construction method for reinforced soil surface would be more economical, easy and fast construction technology than conventional reinforcement method.

Variations of Density and Strength for Reinforced Soil Mixture by Long-Tern Dry Shrinkage (장기적 건조수축에 의한 보강혼합토의 밀도 및 강도 변화)

  • 이상호;차현주;장병욱;박영곤
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.239-244
    • /
    • 1999
  • In this study , the variation of dry density and unconfined compressive strength were investigated, calcium carbonate, quicklime, portland cement, 19mm monofilaments and fibrilllated fibers were used as reinforcement materials. And calcium chloride was added to cement and calcium carbonate reinforced soil mixture in order to accelerate setting and hardening speed. It appears that dry density is highest in calcium carbonate reinforced soil mixture with 9% of mixing rae. According to increasing the amount of fibers, in soil mixture , the dry density decreased. The more the amount of monofilament fibers is the higher the compressive strength. But the compressive strength is decreased in fibrrillated fiber added soil mixture with more than 1.0% of mixing rate.

  • PDF

Analysis of Static and Dynamic Characteristics of Reinforced Roadbed Materials (철도 강화노반재료의 정ㆍ동적 특성 분석)

  • 황선근;신민호;이성혁;이시한;최찬용
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.1
    • /
    • pp.34-41
    • /
    • 2000
  • The analysis of static and dynamic characteristics of reinforced roadbed materials was performed through model and laboratory tests. The strength characteristic of reinforced roadbed materials such as HMS-25 and soil were investigated through the unconfined axial compression test, the model soil box test and the combined resonant column and torsional shear test. The unconfined axial compression strength of HMS-25 shows a steady increasement in strength due to the chemical hardening reaction between HMS-25 and water. The result of model soil box test reveals that railroad roadbed of HMS-25 is better than that of soil in several aspects, such as, bearing capacity and settlement. The combined resonant column and torsional shear test result indicates that shear modulus of HMS-25 and soil increase with the power of 0.5 to the confining pressure and linear relationship to normalized shear modulus and damping ratio.

  • PDF

A Study on the Crack Characteristics of the Syntetic Fiber Reinforced Soil (섬유 보강토의 균열 특성 연구)

  • 송창섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.3
    • /
    • pp.59-65
    • /
    • 1999
  • This study has been performed to confirm the three dimensional effect of the crack reduction and the restrained effect of crack growth for the synthetic fiber reinforced soil. Two types of polyrpropylene fiber and low plastic clay(CL) were used for the test. And the test variable were fiber length and so on. The results of the study were summarized as follows ; 1) The mixing of synthetic fiber was effective in reducing crack growth due to adhesion between soil partlcles and synthetic fiber.l Especially initlal crack was delayed, as compared with the pure soil, for about 1 day in case of mono filament synthetic fiber and for about 1 or 2 days in case of fibrillated syntetic fiber. 2) As the content and length of synthetic fiber were increased , the effect of crack reduction was increased. It was found that 0.5% fibrillated synthetic fiber with 40mm length reinforced soil had about 3 times more effective than natural soils. 3) In case of the same fiber content and fiber length, the fibrillated synthetic fiber has nmore effective than the mono filament synthetic fiber for crack reduction.

  • PDF

Failure pattern of twin strip footings on geo-reinforced sand: Experimental and numerical study

  • Mahmoud Ghazavi;Marzieh Norouzi;Pezhman Fazeli Dehkordi
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.653-671
    • /
    • 2023
  • In practice, the interference influence caused by adjacent footings of structures on geo-reinforced loose soil has a considerable impact on their behavior. Thus, the goal of this study is to evaluate the behavior of two strip footings in close proximity on both geocell and geogrid reinforced soil with different reinforcement layers. Geocell was made from geogrid material used to compare the performance of cellular and planar reinforcement on the bearing pressure of twin footings. Extensive experimental tests have been performed to attain the optimum embedment depth and vertical distance between reinforcement layers. Particle image velocimetry (PIV) analysis has been conducted to monitor the deformation, tilting and movement of soil particles beneath and between twin footings. Results of tests and PIV technique were verified using finite element modeling (FEM) and the results of both PIV and FEM were used to utilize failure mechanisms and influenced shear strain around the loading region. The results show that the performance of twin footings on geocell-reinforced sand at allowable and ultimate settlement ranges are almost 4% and 25% greater than the same twin footings on the same geogrid-reinforced sand, respectively. By increasing the distance between twin footings, soil particle displacements become smaller than the settlement of the foundations.

Numerical Investigation on Behavior of Back-to-Back Reinforced Earth Wall (Back-to-Back옹벽의 거동에 관한 수치 해석적 연구)

  • Yoo, Chung-Sik;Kim, Jae-Wang
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.131-142
    • /
    • 2009
  • Geosynthetic reinforced soil walls are well recognized alternatives to conventional retaining walls due to many advantages in terms of ease of construction, economy, and aesthetics, among others. In recent years, the use of back-to-back (BTB) geosynthetic reinforced soil walls has been increasing for roadway and railway construction. However, there are insufficient studies concerning the behavior of BTB type geosynthetic reinforced soil walls. In this study a series of finite element analysis were performed for BTB walls with various wall geometry and reinforcement distribution. The results were then analyzed to relate the wall geometry and reinforcement distribution and the performance of BTB walls. Optimum reinforcement pattern was also investigated.

Behavior of Geogrid-Reinforced Soil with Cyclic plate Load Test (반복 평판재하시험을 통한 지오그리드 보강지반의 거동 특성)

  • 신은철;김두환;이상조;이규진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.285-292
    • /
    • 1999
  • The cyclic plate load test were peformed to determine the behavior of reinforced soft ground with multiple layers of geogrid. Five series of test were conducted with varying the soil profile conditions which including the ground level, type of soil, and the thickness of each soil layer. The plate load test equipment was slightly modified to apply the cyclic load. Based on the cyclic plate load test results, the bearing capacity ratio(BCR), subbase modules, shear modules, the elastic rebound ratio, and reinforcing parameters are presented.

  • PDF

Characteristics of Displacement of the Reinforced Roadbed Materials with Cyclic Loading (동적하중 재하시 강화노반 재료별 침하 특성)

  • 황선근;이성혁;최찬용
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.2
    • /
    • pp.70-76
    • /
    • 2002
  • In this study, performance of reinforced railroad roadbeds with the reinforced roadbed materials were investigated through the real scale roadbed tests. It was also found that the reinforced roadbed with reinforced roadbed materials has less elastic and plastic settlement than the one with soil. The slag roadbed was more effective than the crushed stone roadbed with the same condition for load distribution. Therefore considering overall characteristics of reinforced roadbed material, the optimum thickness was recommended as 50 cm. Furthermore the real scale model test under the simulated rainfall condition, the settlement in the slag roadbed was about 8 times smaller than the settlement in the soil roadbed.

Testing and Numerical Analysis Techniques for Pull-out Resistance Characteristics of the Extensible Geogrid (신장성 지오그리드 보강재의 인발저항특성 평가를 위한 시험 및 수치해석 기법)

  • 이성혁;고태훈;이진욱;황선근
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.2
    • /
    • pp.93-103
    • /
    • 2002
  • Reinforced earth structure has been regarded as general structure in order to achieve efficient land utilization as well as securing safety in railway service lines in other countries, but there are no construction actual results in Korea. In this study, the soil-geogrid interaction mechanism was investigated experimentally and numerical analysis was performed to predict Pull-out behaviour of geogrid embedded in reinforced earth body. This experimental data and analysis result can not contribute to understand the soil-geogrid interaction mechanism at soil-geogrid interface but also be used in design practice of the railway reinforced earth structures.