• Title/Summary/Keyword: Reinforced Earth

Search Result 349, Processing Time 0.023 seconds

Finite element analysis of a CFRP reinforced retaining wall

  • Ouria, Ahad;Toufigh, Vahab;Desai, Chandrakant;Toufigh, Vahid;Saadatmanesh, Hamid
    • Geomechanics and Engineering
    • /
    • v.10 no.6
    • /
    • pp.757-774
    • /
    • 2016
  • Soils are usually weak in tension therefore different materials such as geosynthetics are used to address this inadequacy. Worldwide annual consumption of geosynthetics is close to $1000million\;m^2$, and the value of these materials is probably close to US$1500 million. Since the total cost of the construction is at least four or five times the cost of the geosynthetic itself, the impact of these materials on civil engineering construction is very large indeed. Nevertheless, there are several significant problems associated with geosynthetics, such as creep, low modulus of elasticity, and susceptibility to aggressive environment. Carbon fiber reinforced polymer (CFRP) was introduced over two decades ago in the field of structural engineering that can also be used in geotechnical engineering. CFRP has all the benefits associated with geosynthetics and it boasts higher strength, higher modulus, no significant creep and reliability in aggressive environments. In this paper, the performance of a CFRP reinforced retaining wall is investigated using the finite element method. Since the characterization of behavior of soils and interfaces are vital for reliable prediction from the numerical model, soil and interface properties are obtained from comprehensive laboratory tests. Based on the laboratory results for CFRP, backfill soil, and interface data, the finite element model is used to study the behavior of a CFRP reinforced wall. The finite element model was verified based on the results of filed measurements for a reference wall. Then the reference wall simulated by CFRP reinforcements and the results. The results of this investigations showed that the safety factor of CFRP reinforced wall is more and its deformations is less than those for a retaining wall reinforced with ordinary geosynthetics while their construction costs are in similar range.

A Case Study on Behavior of High-Raised Reinforced Soil Wall (고성토 보강토옹벽의 거동에 관한 사례연구)

  • Cho, Sam-Deok;Lee, Kwang-Wu;Lee, Hoon-Yeon;Chang, Ki-Soo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.4
    • /
    • pp.35-42
    • /
    • 2006
  • This paper describes a field experience on geogrid-reinforced soil walls rising up to 29.5m in height. Since experiences of design and construction on very high-raised geogrid reinforced soil wall were limited, thorough design and construction management was performed for safe construction of the wall. Regarding design of the wall, both internal and external stabilities were examined based on the design guideline specified by FHWA and overall slope stability analyses were performed by using Bishop simplified method. Moreover, a series of instrumentations were performed. The results of instrumentation for two tiered reinforced soil wall showed that not only the deformations of both the wall face and the reinforcement but also the horizontal earth pressures acting on the wall facing were very small. These results indicate that the reinforced soil wall technology can be applied successfully for high-raised tiered wall more than 20m heights and FHWA design guideline is very conservative for that large wall.

  • PDF

Design of the Green Wall System considering Distribution Effect of Earth Pressure by Soil Nail (네일의 토압분담 효과를 고려한 Green Wall 시스템의 설계)

  • Park, Si-Sam;Cho, Sung-Han;Yoo, Chan-Ho;Kim, Hong-Taek;Kim, Yong-Yeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1038-1045
    • /
    • 2006
  • The Green Wall is highest eco-system among a segmental retaining wall systems. Recently, the demand of high segmental retaining wall (SRW) is increased in domestic. The soil nailing system is applied in order to maintain the high SRW stability for steeper slope. However, the proper design approach that can consider the earth pressure reduction effects in soil nailing system has not been proposed. This study was performed to introduce the design case by 'Two-Body Translation mechanism' to be able to consider distribution of earth pressure in the soil nailing when designing the green wall using soil nailing system. Also, this study attempts to evaluate the earth pressure change when advanced soil nailing system is constructed using $FLAC^{2D}$ ver. 3.30 program and 'Two-Body Translation mechanism'. Also in this study, various parametric studies using numerical methods as shear strength reduction (SSR) technique and limit equilibrium technique were carried out. In the parametric study, the length ratio and the bond ratio of the soil nailing were changed to identify the earth pressure reduction effect of the retaining wall reinforced by soil nailing.

  • PDF

An experimental study on the durability of steel fiber reinforced concrete containing waste glass (폐유리를 활용한 강섬유보강 콘크리트의 내구성에 관한 실험적 연구)

  • 정명일;조광연;이봉춘;김경훈;박승범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.841-846
    • /
    • 2002
  • As growing of industrialization and increasing of population. the quantities of waste are rapidly growing in the earth. It cause some problems such as the waste of natural resources and environmental pollution. In this context, recycling waste glass as a material of concrete has a great advantage environmentally and economically. On that score, other contries have start recycling waste glass widely and accoumulatig the technology of manufacturing equipment and construction. However, few studies have been done in this country. Therefore, this study was conducted freeze-thaw resistance test and neutralization reaction test to analyze the durability properties of steel fiber reinforced concrete containing waste glass as fine aggregate and containing industrial by-products(Fly ash).

  • PDF

Characteristics of Roadbed Behaviors of Concrete Track for High-Speed Railway (고속철도 콘크리트궤도용 흙노반의 거동 특성)

  • Lee Il-Wha;Lee Su-Hyung;Kang Yun-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.3 s.34
    • /
    • pp.298-304
    • /
    • 2006
  • An active application of concrete track is being expected for the future constructions of Korean railroad. For the successful concrete track construction and design in earthwork areas, the roadbed behavior should be reasonably estimated using the proper analysis method. In this paper, behaviors of concrete track on the reinforced roadbed constructed with the standard stiffness and depth were estimated thorough numerical analyses and field measurements. A three dimensional finite difference method was employed to model the concrete tracks and subground. The settlement and vertical pressures caused by train load were estimated by the numerical method and compared with the field measurement results. The bearing characteristics of roadbed were presented and the proper method for the analysis of concrete track was proposed.

Tension Wire Sensor of shallow failure detection for the real time slop stabilization (지표변위 감지 센서를 활용한 사면 안전감지 시스템)

  • Chang, Ki-Tae
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.3
    • /
    • pp.137-143
    • /
    • 2005
  • Early detection of premonitory symptom of slope movement ensures tremendous saving of lives and repair costs from catastrophic disaster. Therefore, it is essential to constantly monitor the performance and integrity of both reinforced and un-reinforced cut slopes. We developed a novel monitoring system by using tension wire sensors. It's advantages are highly sensitivity, simple installation, large displacement measurement, durability of system, capability of remote sensing. Real-time measurement of slope surface movement is shown graphically and it gives a warning when the monitored value exceeds a given threshold level so that any sign of abnormal slope movement can be easily perceived.

  • PDF

A Study on the Slide Suppressor Wall Method Reinforced with Nailing System (Nailing System으로 보강된 억지벽체공법에 관한 연구)

  • 김홍택;강인규
    • Geotechnical Engineering
    • /
    • v.11 no.1
    • /
    • pp.79-100
    • /
    • 1995
  • This paper proposes a stabilizing method against landslide using slide suppressor wall reinforced with soil nails. Included are a procedure to predict earth pressures acting on the concrete panel and a method of analysis of stabilizing pile. Based on the proposed procedure, the efficient installation type and inclusion angle of nails are analyzed. Also, optimum location of the slide suppressor wall composed of concrete panel and stabilizing pile is analyzed. Finally the comparison with a method proposed by Wright is made, and the effect of interactions between stabilizing piles is examined, throughout the design example.

  • PDF

Rao-3 algorithm for the weight optimization of reinforced concrete cantilever retaining wall

  • Kalemci, Elif N.;?kizler, S. Banu
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.527-536
    • /
    • 2020
  • The paper represents an optimization algorithm for reinforced concrete retaining wall design. The proposed method, called Rao-3 optimization algorithm, is a recently developed algorithm. The total weight of the steel and concrete, which are used for constructing the retaining wall, were chosen as the objective function. Building Code Requirements for Structural Concrete (ACI 318-05) and Rankine's theory for lateral earth pressure were considered for structural and geotechnical design, respectively. Number of the design variables are 12. Eight of those express the geometrical dimensions of the wall and four of those express the steel reinforcement of the wall. The safety against overturning, sliding and bearing capacity failure were regarded as the geotechnical constraints. The safety against bending and shear failure, minimum and maximum areas of reinforcement, development lengths of steel reinforcement were regarded as structural constraints. The performance of proposed algorithm was evaluated with two design examples.

Seismic Response of Soil-Reinforced Segmental Retaining Walls by Finite Element Analysis (유한요소해석에 의한 블록식 보강토 옹벽의 지진시 응답특성)

  • 유충식
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.15-25
    • /
    • 2001
  • 본 고에서는 블록식 보강토 옹벽의 지진시 거동에 관한 유한요소해석 결과를 다루었다. 보강토 옹벽의 지진시 변위거동을 검토한 결과 벽체저부를 지점으로 하는 캔틸레버형태의 변위 거동을 보였으며 따라서 옹벽 상단부에서의 보강재 인장력 증가가 현저하게 나타나 벽체전반에 걸친 분포양상은 균등한 경향을 보였다. 한편, 지진하중으로 인한 증분유발인장력에 관하여 검토한 결과 기존의 보강토 옹벽 내진설계기준과 비교하여 정성.정량적인 측면에서 상당한 차이를 보였으며 내진설계기준이 전반적으로 과소평가 하는 것으로 나타났다. 아울러서, 내진설계측면에서 변위억제 방안에 관한 매개변수 연구결과 임의 조건에 있어서 최대의 보강효과를 나타내는 보강재 임계 강성과 포설길이가 존재하며 최적의 보강효과를 얻기 위해서는 이에 대한 종합적인 검토가 요구되는 것으로 나타났다. 본 고에서는 연구결과를 종합적으로 고찰하여 실무 적용관점에서의 주안점을 언급하였다.

  • PDF

An Experimental Study on Reinforcing Effects for Soil Structures Reinforced by Nail with an Anchor Shape (앵카형태의 지반네일로 보강된 흙구조물의 보강효과에 관한 실험적 연구)

  • 김준석;이상덕;이승래
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.2
    • /
    • pp.103-111
    • /
    • 2001
  • 지반네일 보강방법은 이론적 뒷받침과 함께 경험적인 작업을 기초로 발전되어 왔으며, 연구 결과를 바탕으로 현장적용이 활발하게 이루어지고 있다. 본 연구에서는 소일 네일로 보강된 토체의 안정성에 중요한 요소인 소일네일의 인발저항력을 높이기 위하여 네일의 끝 부분에 앵커와 같은 구근이 형성된 네일로 보강된 토체의 파괴거동을 이해하기 위하여 비교적 큰 규모의 실험을 실시하였다. 토체의 변위, 네일의 축변형률, 네일의 축하중, 토체내부의 토압 등에 관한 자료를 얻었으며 이러한 자료들을 분석하였다. 또한 같은 조건에서 일반적인 형태의 네일로 실험된 결과와 비교분석을 실시하였다.

  • PDF