• 제목/요약/키워드: Regression analysis model formula

검색결과 106건 처리시간 0.029초

A Study on Estimate Model for Peak Time Congestion

  • Kim, Deug-Bong;Yoo, Sang-Lok
    • 해양환경안전학회지
    • /
    • 제20권3호
    • /
    • pp.285-291
    • /
    • 2014
  • This study applied regression analysis to evaluate the impact of hourly average congestion calculated by bumper model in the congested area of each passage of each port on the peak time congestion, to suggest the model formula that can predict the peak time congestion. This study conducted regression analysis of hourly average congestion and peak time congestion based on the AIS survey study of 20 ports in Korea. As a result of analysis, it was found that the hourly average congestion has a significant impact on the peak time congestion and the prediction model formula was derived. This formula($C_p=4.457C_a+29.202$) can be used to calculate the peak time congestion based on the predicted hourly average congestion.

통계해석에 의한 G/T 4톤급 연안어선의 유효마력 추정 (Prediction of Effective Horsepower for G/T 4 ton Class Coast Fishing Boat Using Statistical Analysis)

  • 박충환;심상목;조효제
    • 한국해양공학회지
    • /
    • 제23권6호
    • /
    • pp.71-76
    • /
    • 2009
  • This paper describes a statistical analysis method for predicting a coast fishing boat's effective horsepower. The EHP estimation method for small coast fishing boats was developed, based on a statistical regression analysis of model test results in a circulating water channel. The statistical regression formula of a fishing boat's effective horsepower is determined from the regression analysis of the resistance test results for 15 actual coast fishing boats. This method was applied to the effective horsepower prediction of a G/T 4 ton class coast fishing boat. From the estimation of the effective horsepower using this regression formula and the experimental model test of the G/T 4 ton class coast fishing boat, the estimation accuracy was verified under 10 percent of the design speed. However, the effective horsepower prediction method for coast fishing boats using the regression formula will be used at the initial design and hull-form development stage.

AN ASSESSMENT OF UNCERTAINTY ON A LOFT L2-5 LBLOCA PCT BASED ON THE ACE-RSM APPROACH: COMPLEMENTARY WORK FOR THE OECD BEMUSE PHASE-III PROGRAM

  • Ahn, Kwang-Il;Chung, Bub-Dong;Lee, John C.
    • Nuclear Engineering and Technology
    • /
    • 제42권2호
    • /
    • pp.163-174
    • /
    • 2010
  • As pointed out in the OECD BEMUSE Program, when a high computation time is taken to obtain the relevant output values of a complex physical model (or code), the number of statistical samples that must be evaluated through it is a critical factor for the sampling-based uncertainty analysis. Two alternative methods have been utilized to avoid the problem associated with the size of these statistical samples: one is based on Wilks' formula, which is based on simple random sampling, and the other is based on the conventional nonlinear regression approach. While both approaches provide a useful means for drawing conclusions on the resultant uncertainty with a limited number of code runs, there are also some unique corresponding limitations. For example, a conclusion based on the Wilks' formula can be highly affected by the sampled values themselves, while the conventional regression approach requires an a priori estimate on the functional forms of a regression model. The main objective of this paper is to assess the feasibility of the ACE-RSM approach as a complementary method to the Wilks' formula and the conventional regression-based uncertainty analysis. This feasibility was assessed through a practical application of the ACE-RSM approach to the LOFT L2-5 LBLOCA PCT uncertainty analysis, which was implemented as a part of the OECD BEMUSE Phase III program.

설계단계에서의 트롤어선 조종성능 추정 정확성 향상에 대한 연구 (A study on the improvement of the accuracy of fishing trawlers maneuverability estimation at the design stage)

  • 김수형;이춘기;이민규
    • 수산해양기술연구
    • /
    • 제56권4호
    • /
    • pp.374-383
    • /
    • 2020
  • At ship design stage, the maneuverability is generally estimated based on the empirical formula or the computational fluid dynamic (CFD), which is one of the numerical simulation methods. Using the hydrodynamic derivatives derived through these methods can quantitatively estimate the maneuverability of target vessels and evaluate indirect maneuverability. Nevertheless, research on estimating maneuverability is insufficient for ships not subject to IMO maneuverability standard, especially fishing vessels, and even at the design stage, the empirical formula developed for merchant ships is applied without modification. An estimation error may occur due to the empirical formula derived from the regression analysis results of a model test if the empirical formula developed for merchant ships with different hull shapes is applied to fishing vessels without any modification. In this study, the modified empirical formula that can more accurately estimate the fishing vessel's maneuverability was derived by including the hull shape parameter of target fishing trawlers in the regression analysis process that derives Kijima et al. (1990) formula. As a result, the modified empirical formula showed an average estimation error of 6%, and the result improved the average error of 49% of Kijima et al. (1990) formula developed for merchant ships.

A simple nonlinear model for estimating obturator foramen area in young bovines

  • Pares-Casanova, Pere M.
    • 대한수의학회지
    • /
    • 제53권2호
    • /
    • pp.73-76
    • /
    • 2013
  • The aim of this study was to produce a simple and inexpensive technique for estimating the obturator foramen area (OFA) from young calves based on the hypothesis that OFA can be extrapolated from simple linear measurements. Three linear measurements - dorsoventral height, craneocaudal width and total perimeter of obturator foramen - were obtained from 55 bovine hemicoxae. Different algorithms for determining OFA were then produced with a regression analysis (curve fitting) and statistical analysis software. The most simple equation was OFA ($mm^2$) = [3,150.538 + ($36.111^*CW$)] - [147,856.033/DH] (where CW = craneocaudal width and DH = dorsoventral height, both in mm), representing a good nonlinear model with a standard deviation of error for the estimate of 232.44 and a coefficient of multiple determination of 0.846. This formula may be helpful as a repeatable and easily performed estimation of the obturator foramen area in young bovines. The area of the obturator foramen magnum can thus be estimated using this regression formula.

미계측 중소유역의 월유출량 산정을 위한 다중회귀모형 연구 (A Multiple Regression Model for the Estimation of Monthly Runoff from Ungaged Watersheds)

  • 윤용남;원석연
    • 물과 미래
    • /
    • 제24권3호
    • /
    • pp.71-82
    • /
    • 1991
  • 수질원 부존량의 평가를 위한 월유출량의 추정방법은 통상 경험식에 의한 방법, 물수지분석에 의한 방법 그리고 회귀분석에 의한 방법등이 있다. 본 연구는 수위계측지점의 유출자료를 사용하여 다중회귀분석으로 회귀모형을 수립함으로서, 장기 수자원 개발계획의 수립에 필요한 월유출량의 추정을 가능토록하였다. 사용한 자료는 총 48개 수위관측소의 월유출량 및 기상,지상 인자 이며 이중 43개 지점은 모형의 개발에, 나머지 5개 지점은 모형의 검증에 이용하였다. 또한 모형을 유역별모형과 전체모형, 평균치모형과 개별자료모형으로 구분하여 모형-1, 모형-2, 모형-3 그리고 모형-4의 4개 모형을 수립하였으며, 검증결과 모형-2가 가장 적절한 모형으로 판단되었다. 선정된 회귀모형과 기존의 가지야마공식의 적용성을 통계적 방법에 의해 비교한 결과 본 다중회귀모형이 연유출량 뿐아니라 월별유출량의 변화성향을 매우 잘 나타내고 있으며, 적용 또한 용이함이 입증되었다.

  • PDF

기존 세굴심 산정식의 적정성 검토 및 세굴심 산정식 개발에 대한 실험적 연구세요 (Review of appropriateness of existing formula for estimating the depth of scour and the experimental study on development of the formula to estimated the depth of scour)

  • 최한규;이영섭
    • 산업기술연구
    • /
    • 제29권A호
    • /
    • pp.67-75
    • /
    • 2009
  • In this study, the investigation of hydraulic characteristics and the pier data for the rivers in Youngseo area of Gangwon Province was carried out and the evaluation and comparison between the values from existing formulas and the values from the model tests was conducted, along with the statistical sensitivity analysis of the elements influencing the scour. As a result, the deviation between the values calculated from the existing formulas and the model tests appeared to be 1.09%~63.98% as the piers were getting larger, which indicated that the existing formulas were not appropriate to estimate the scour in the rivers in Gangwon area. And the formula which estimates the scour with the size of the pier only, among the existing ones, was far behind in estimating the sensitivity because of insufficient incorporation of the hydraulic characteristics, though it is convenient to estimate the value. The sensitivity analysis of the value from the model tests and the depth of the scour proved the significant impact on scour by the size of the pier and water depth, indicating 64% and 36%, respectively. In this study, the formula developed through the regression analysis performed based on the values from the model tests, which appeared to be appropriate for the rivers in Gangwon Province, was proposed.

  • PDF

다중회귀분석에 의한 하천 월 유출량의 추계학적 추정에 관한 연구 (A Study on Stochastic Estimation of Monthly Runoff by Multiple Regression Analysis)

  • 김태철;정하우
    • 한국농공학회지
    • /
    • 제22권3호
    • /
    • pp.75-87
    • /
    • 1980
  • Most hydro]ogic phenomena are the complex and organic products of multiple causations like climatic and hydro-geological factors. A certain significant correlation on the run-off in river basin would be expected and foreseen in advance, and the effect of each these causual and associated factors (independant variables; present-month rainfall, previous-month run-off, evapotranspiration and relative humidity etc.) upon present-month run-off(dependent variable) may be determined by multiple regression analysis. Functions between independant and dependant variables should be treated repeatedly until satisfactory and optimal combination of independant variables can be obtained. Reliability of the estimated function should be tested according to the result of statistical criterion such as analysis of variance, coefficient of determination and significance-test of regression coefficients before first estimated multiple regression model in historical sequence is determined. But some error between observed and estimated run-off is still there. The error arises because the model used is an inadequate description of the system and because the data constituting the record represent only a sample from a population of monthly discharge observation, so that estimates of model parameter will be subject to sampling errors. Since this error which is a deviation from multiple regression plane cannot be explained by first estimated multiple regression equation, it can be considered as a random error governed by law of chance in nature. This unexplained variance by multiple regression equation can be solved by stochastic approach, that is, random error can be stochastically simulated by multiplying random normal variate to standard error of estimate. Finally hybrid model on estimation of monthly run-off in nonhistorical sequence can be determined by combining the determistic component of multiple regression equation and the stochastic component of random errors. Monthly run-off in Naju station in Yong-San river basin is estimated by multiple regression model and hybrid model. And some comparisons between observed and estimated run-off and between multiple regression model and already-existing estimation methods such as Gajiyama formula, tank model and Thomas-Fiering model are done. The results are as follows. (1) The optimal function to estimate monthly run-off in historical sequence is multiple linear regression equation in overall-month unit, that is; Qn=0.788Pn+0.130Qn-1-0.273En-0.1 About 85% of total variance of monthly runoff can be explained by multiple linear regression equation and its coefficient of determination (R2) is 0.843. This means we can estimate monthly runoff in historical sequence highly significantly with short data of observation by above mentioned equation. (2) The optimal function to estimate monthly runoff in nonhistorical sequence is hybrid model combined with multiple linear regression equation in overall-month unit and stochastic component, that is; Qn=0. 788Pn+0. l30Qn-1-0. 273En-0. 10+Sy.t The rest 15% of unexplained variance of monthly runoff can be explained by addition of stochastic process and a bit more reliable results of statistical characteristics of monthly runoff in non-historical sequence are derived. This estimated monthly runoff in non-historical sequence shows up the extraordinary value (maximum, minimum value) which is not appeared in the observed runoff as a random component. (3) "Frequency best fit coefficient" (R2f) of multiple linear regression equation is 0.847 which is the same value as Gaijyama's one. This implies that multiple linear regression equation and Gajiyama formula are theoretically rather reasonable functions.

  • PDF

배합조건이 다른 콘크리트의 물 시멘트비와 압축강도를 고려한 염화물 확산계수 예측모델식 구성 (Construction of Prediction Model Formula of Chloride Diffusion Coefficient Considering Water-Cement Ratio and Compressive Strength of Different Mix Conditions)

  • 이택우;박승범;윤의식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.185-188
    • /
    • 2005
  • This study selected three different specified concrete strength types of mixture which were applied to domestic seawater concrete structure and measured compressive strength and chloride diffusion coefficient and composed the formula of prediction model of chloride diffusion coefficient in order to provide the useful data for concrete mix decision of seawater structures. As a result, the formula of prediction model of chloride diffusion coefficient which set W/C and compressive strength as parameters and performed multiplex regression analysis which was based on the mathematical theory was confirmed more reliable than the formula of prediction which was composed existing water-cement ratio function.

  • PDF

Modeling strength of high-performance concrete using genetic operation trees with pruning techniques

  • Peng, Chien-Hua;Yeh, I-Cheng;Lien, Li-Chuan
    • Computers and Concrete
    • /
    • 제6권3호
    • /
    • pp.203-223
    • /
    • 2009
  • Regression analysis (RA) can establish an explicit formula to predict the strength of High-Performance Concrete (HPC); however, the accuracy of the formula is poor. Back-Propagation Networks (BPNs) can establish a highly accurate model to predict the strength of HPC, but cannot generate an explicit formula. Genetic Operation Trees (GOTs) can establish an explicit formula to predict the strength of HPC that achieves a level of accuracy in between the two aforementioned approaches. Although GOT can produce an explicit formula but the formula is often too complicated so that unable to explain the substantial meaning of the formula. This study developed a Backward Pruning Technique (BPT) to simplify the complexity of GOT formula by replacing each variable of the tip node of operation tree with the median of the variable in the training dataset belonging to the node, and then pruning the node with the most accurate test dataset. Such pruning reduces formula complexity while maintaining the accuracy. 404 experimental datasets were used to compare accuracy and complexity of three model building techniques, RA, BPN and GOT. Results show that the pruned GOT can generate simple and accurate formula for predicting the strength of HPC.