• Title/Summary/Keyword: Regression Model Optimization

Search Result 334, Processing Time 0.025 seconds

Machine Learning Based Model Development and Optimization for Predicting Radiation (방사선량률 예측을 위한 기계학습 기반 모델 개발 및 최적화 연구)

  • SiHyun Lee;HongYeon Lee;JungMin Yeom
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.551-557
    • /
    • 2023
  • In recent years, radiation has become a socially important issue, increasing the need for accurate prediction of radiation levels. In this study, machine learning-based models such as Multiple Linear Regression (MLR), Random Forest (RF), XGBoost, and LightGBM, which predict the dose rate by time(nSv h-1) by selecting only important variables, were used, and the correlation between temperature, humidity, cumulative precipitation, wind direction, wind speed, local air pressure, sea pressure, solar radiation, and radiation dose rate (nSv h-1) was analyzed by collecting weather data and radiation dose rate for about 6 months in Jangseong, Jeollanam-do. As a result of the evaluation based on the RMSE (Root Mean Squared Error) and R-Squared (R-Squared coefficient of determination) scores, the RMSE of the XGBoost model was 22.92 and the R-Squared was 0.73, showing the best performance among the models used. As a result of optimizing hyperparameters of all models using the GridSearch method and comparing them by adding variables inside the measuring instrument, it was confirmed that the performance improved to 2.39 for RMSE and 0.99 for R-Squared in both XGBoost and LightGBM.

Prediction of Remaining Useful Life of Lithium-ion Battery based on Multi-kernel Support Vector Machine with Particle Swarm Optimization

  • Gao, Dong;Huang, Miaohua
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1288-1297
    • /
    • 2017
  • The estimation of the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is important for intelligent battery management system (BMS). Data mining technology is becoming increasingly mature, and the RUL estimation of Li-ion batteries based on data-driven prognostics is more accurate with the arrival of the era of big data. However, the support vector machine (SVM), which is applied to predict the RUL of Li-ion batteries, uses the traditional single-radial basis kernel function. This type of classifier has weak generalization ability, and it easily shows the problem of data migration, which results in inaccurate prediction of the RUL of Li-ion batteries. In this study, a novel multi-kernel SVM (MSVM) based on polynomial kernel and radial basis kernel function is proposed. Moreover, the particle swarm optimization algorithm is used to search the kernel parameters, penalty factor, and weight coefficient of the MSVM model. Finally, this paper utilizes the NASA battery dataset to form the observed data sequence for regression prediction. Results show that the improved algorithm not only has better prediction accuracy and stronger generalization ability but also decreases training time and computational complexity.

Multi-objective Optimization of Marine 3/2WAY Pneumatic Valve using Compromise Decision-Making Method (절충의사결정방법을 이용한 선박용 3/2WAY 공압밸브의 다목적 최적설계)

  • Kim, Jun-Oh;Baek, Seok-Heum;Kim, Tae-Woo;Kang, Sangmo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.81-90
    • /
    • 2013
  • A study on the flow-structure characteristics of marine 3/2WAY pneumatic valve is essential for optimizing the performance of ship engines. It is important that the valve has desirable safety factor and reduced weight from safety and economic point of view. In this paper, flow-structure characteristics of pneumatic valve is obtained by being optimized based on the proper design criteria. The air with the pressure of 30 bar is the working fluid which is made to fill in the tack in short time. This time is defined as the filling time. On optimum design by considering the flow-structure characteristics, the approach is based on (1) the mathematical formulation of design decisions using the compromise decision-making method, and (2) the approximation technique of response surfaces. The methodology is demonstrated as the multi-objective optimization tool to improve the performance of marine 3/2WAY pneumatic valve.

Ultrasound-assisted Extraction for Development of Skin Whitening and Anti-wrinkling Cosmetic Materials from Spirulina platensis (스피루리나(Spirulina platensis)로부터 미백과 주름개선 생리활성 물질 분리를 위한 초음파 추출공정 개발)

  • Kim, So Hee;Jeon, Seong Jin;Kim, Jun Hee;Yeom, Suh Hee;Kim, Jin Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.3
    • /
    • pp.271-279
    • /
    • 2021
  • Ultrasound-assisted extraction (UAE) conditions, including extraction time, extraction temperature, and ethanol concentration, were optimized to increase the total flavonoid content (TFC), tyrosinase inhibitory activity (TIA), and collagenase inhibitory activity (CIA) of Spirulina platensis through central composite design (CCD). For the optimization of the three dependent variables, a quadratic regression model was derived from 17 experimental sets for the simultaneous maximization of TFC, TIA, and CIA. The predicted optimal UAE conditions were 44.0 min of extraction time, 82.8℃ of extraction temperature, and 96.0% of ethanol concentration. Under these conditions, 0.93 mg QE/g DM of TFC, 81.9% of CIA, and 92.1% of TIA were predicted. The CCD-based UAE optimization enabled an increase in TFC, CIA, and TIA, thereby confirming that the S. platensis extract can be used in the development of a cosmetic material with skin whitening and anti-wrinkle effects.

Application of Response Surface Methodology and Plackett Burman Design assisted with Support Vector Machine for the Optimization of Nitrilase Production by Bacillus subtilis AGAB-2

  • Ashish Bhatt;Darshankumar Prajapati;Akshaya Gupte
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.1
    • /
    • pp.69-82
    • /
    • 2023
  • Nitrilases are a hydrolase group of enzymes that catalyzes nitrile compounds and produce industrially important organic acids. The current objective is to optimize nitrilase production using statistical methods assisted with artificial intelligence (AI) tool from novel nitrile degrading isolate. A nitrile hydrolyzing bacteria Bacillus subtilis AGAB-2 (GenBank Ascension number- MW857547) was isolated from industrial effluent waste through an enrichment culture technique. The culture conditions were optimized by creating an orthogonal design with 7 variables to investigate the effect of the significant factors on nitrilase activity. On the basis of obtained data, an AI-driven support vector machine was used for the fitted regression, which yielded new sets of predicted responses with zero mean error and reduced root mean square error. The results of the above global optimization were regarded as the theoretical optimal function conditions. Nitrilase activity of 9832 ± 15.3 U/ml was obtained under optimized conditions, which is a 5.3-fold increase in compared to unoptimized (1822 ± 18.42 U/ml). The statistical optimization method involving Plackett Burman Design and Response surface methodology in combination with an AI tool created a better response prediction model with a significant improvement in enzyme production.

Laser micro-drilling of CNT reinforced polymer nanocomposite: A parametric study using RSM and APSO

  • Lipsamayee Mishra;Trupti Ranjan Mahapatra;Debadutta Mishra;Akshaya Kumar Rout
    • Advances in materials Research
    • /
    • v.13 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • The present experimental investigation focuses on finding optimal parametric data-set of laser micro-drilling operation with minimum taper and Heat-affected zone during laser micro-drilling of Carbon Nanotube/Epoxy-based composite materials. Experiments have been conducted as per Box-Behnken design (BBD) techniques considering cutting speed, lamp current, pulse frequency and air pressure as input process parameters. Then, the relationship between control parameters and output responses is developed using second-order nonlinear regression models. The analysis of variance test has also been performed to check the adequacy of the developed mathematical model. Using the Response Surface Methodology (RSM) and an Accelerated particle swarm optimization (APSO) technique, optimum process parameters are evaluated and compared. Moreover, confirmation tests are conducted with the optimal parameter settings obtained from RSM and APSO and improvement in performance parameter is noticed in each case. The optimal process parameter setting obtained from predictive RSM based APSO techniques are speed=150 (m/s), current=22 (amp), pulse frequency (3 kHz), Air pressure (1 kg/cm2) for Taper and speed=150 (m/s), current=22 (amp), pulse frequency (3 kHz), air pressure (3 kg/cm2) for HAZ. From the confirmatory experimental result, it is observed that the APSO metaheuristic algorithm performs efficiently for optimizing the responses during laser micro-drilling process of nanocomposites both in individual and multi-objective optimization.

Concrete compressive strength prediction using the imperialist competitive algorithm

  • Sadowski, Lukasz;Nikoo, Mehdi;Nikoo, Mohammad
    • Computers and Concrete
    • /
    • v.22 no.4
    • /
    • pp.355-363
    • /
    • 2018
  • In the following paper, a socio-political heuristic search approach, named the imperialist competitive algorithm (ICA) has been used to improve the efficiency of the multi-layer perceptron artificial neural network (ANN) for predicting the compressive strength of concrete. 173 concrete samples have been investigated. For this purpose the values of slump flow, the weight of aggregate and cement, the maximum size of aggregate and the water-cement ratio have been used as the inputs. The compressive strength of concrete has been used as the output in the hybrid ICA-ANN model. Results have been compared with the multiple-linear regression model (MLR), the genetic algorithm (GA) and particle swarm optimization (PSO). The results indicate the superiority and high accuracy of the hybrid ICA-ANN model in predicting the compressive strength of concrete when compared to the other methods.

Energy Efficiency Prediction Based on an Evolutionary Design of Incremental Granular Model (점증적 입자 모델의 진화론적 설계에 근거한 에너지효율 예측)

  • Yeom, Chan-Uk;Kwak, Keun-Chang
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.1
    • /
    • pp.47-51
    • /
    • 2018
  • This paper is concerned with an optimization design of Incremental Granular Model(IGM) based Genetic Algorithm (GA) as an evolutionary approach. The performance of IGM has been successfully demonstrated to various examples. However, the problem of IGM is that the same number of cluster in each context is determined. Also, fuzzification factor is set as typical value. In order to solve these problems, we develop a design method for optimizing the IGM to optimize the number of cluster centers in each context and the fuzzification factor. We perform energy analysis using 12 different building shapes simulated in Ecotect. The experimental results on energy efficiency data set of building revealed that the proposed GA-based IGM showed good performance in comparison with LR and IGM.

A Study on the Analysis of Hydrologic Similarity of the Catchment Response(I) (유역응답의 수문학적 상사성해석에 관한 연구(I))

  • 조홍제;이상배
    • Water for future
    • /
    • v.23 no.4
    • /
    • pp.421-434
    • /
    • 1990
  • The problems of hydrologic similarity among river basins was analyzed by a geomorphologic response model using Hortons*s ordering scheme. The Nash model was used for deriving the geomorphologic response function, and for the optimization of the responsefunction, imcomplete gamma function andRosso*s regression equation were used. The application of this method was tested on some observed flood data of Pyungchang river basin and Wi Stream basin and Bocheong stream, and predictions of hydrologic response were compared with that of the Moment method. The results show that the proposed model and dimensionless instantaneous unit hydrograph can be used for the runoff analysis of an ungauged basin and the analysis of hydrologic similarity.

  • PDF

A New Constrained Parameter Estimation Approach in Preference Decomposition

  • Kim, Fung-Lam;Moy, Jane W.
    • Industrial Engineering and Management Systems
    • /
    • v.1 no.1
    • /
    • pp.73-78
    • /
    • 2002
  • In this paper, we propose a constrained optimization model for conjoint analysis (a preference decomposition technique) to improve parameter estimation by restricting the relative importance of the attributes to an extent as decided by the respondents. Quite simply, respondents are asked to provide some pairwise attribute comparisons that are then incorporated as additional constraints in a linear programming model that estimates the partial preference values. This data collection method is typical in the analytic hierarchy process. Results of a simulation study show the new model can improve the predictive accuracy in partial value estimation by ordinal east squares (OLS) regression.