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Abstract. In this paper, we propose a constrained optimization model for conjoint analysis (a preference
decomposition technique) to improve parameter estimation by restricting the relative importance of the attributes
to an extent as decided by the respondents. Quite simply, respondents are asked to provide some pairwise
attribute comparisons that are then incorporated as additional constraints in a linear programming model that
estimates the partial preference values. This data collection method is typical in the analytic hierarchy process.
Results of a simulation study show the new model can improve the predictive accuracy in partial value

estimation by ordinal least squares (OLS) regression.
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1. INTRODUCTION

In multi-criteria decision-making (MCDM), the prefer-
ences of a set of discrete alternatives are evaluated with
respect to a finite number of criteria. In the additive
preference function model, the overall preference value
for each alternative is estimated by the sum of partial
values of the criteria that characterize the alternatives. The
partial values represent the contribution of the criteria to
the overall preference values. In studying consumer
preferences in marketing and consumer research, researchers
have long been using a preference decomposition
technique, named conjoint analysis. Conjoint analysis has
proven to be a powerful and popular tool for predicting
multi-attribute choice decisions. From rapidly evolving
consumer products, like word-processing software
(Nataraajan, 1993), and sport shoes (Moy et al., 1994) to
timeless goods such as wine (Gil and Sanchez, 1997) and
eggs (Ness and Gerhardy, 1994), conjoint analysis is seen
being used. Services, such as dental (Chakraborty et al.,
1993), auditing (Hermanson et al., 1994), banking (Mihelis
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et al., 2001), and restaurant services (Tucci and Talaga,
1997) can all be evaluated and assessed by conjoint
analysis predicting the consumers preference decision.

Although typically conjoint analysis is used for
predicting consumers preferences for a wide range of
products and services, applications of conjoint analysis
hava hean caan in arsac ac divarce ac Hana K ang nalitiee
in her 1997 reversion to China (Young, 1993) and UK
beef retailing (Hobbs, 1996). Not only have the academic
literature grown, but commercial application also has
increased substantially (Wittink e? al., 1994).

Advantages of using conjoint analysis include its
capacity to incorporate both qualitative and quantitative
physical attributes, and allow estimation of preferences at
the individual level to account for heterogeneity in
preferences. Major roles of conjoint analysis are: new
product design (Gomez Arias, 1996), predicting market
shares of new products (Green and Srinivasan, 1978) and
market segmentation. Green and Srinivasan (1978, 1990)
provide a good introduction to and review of the
approach.
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In standard conjoint analysis, respondents are asked
to give pairwise comparisons of alternatives; in this paper,
the data collection method used in the analytical hierarchy
process (AHP) (Saaty, 1990) will also be adopted to
obtain the pairwise comparisons of attributes to be used by
an optimization model for better partial value estimation.
In spite of the high applicability of conjoint analysis, any
improvement in the accuracy of partial preference value
estimation will be useful to decision maker, especially
when the cost of obtaining additional information from
respondents is relatively small. The pairwise comparison
of attributes can be obtained from the pairwise comparison
ratio matrix of attributes in AHP, which is already a well
established, popular approach in MCDM.

2. LITERATURE REVIEW

Multicriteria decision making techniques are to
facilitate decision-making in finding the best solution to a
particular problem from a set of alternatives. In finding the
best solution, preferences on each of the selected set of
alternatives are evaluated on how well each of the
alternatives satisfies a finite number of criteria. Often,
criterion weights or partial values are used in evaluating
the overall preferences of the alternatives (Stewart, 1990).
Many criteria weighting methods are available, including
the AHP (Saaty, 1990), linear goal programming models,
LINMAP (Srinivasan and Shocker, 1973), and ordinary
least squares regression (OLS). Jacquet-Lagreze and Siskos
(2001) provided a through review of preference disaggre-
gation in MCDM.

In the AHP, the decision-maker makes comparisons
between pairs of alternatives through evaluation of the set
of criteria. These criteria are weighted individually at
every level relative to one another, so that prioritization of
alternatives can be obtained. Some linear goal programming
models (Bryson, 1995; Cook and Kress, 1988; Hashimoto,
1994) determine the priority vector with minimum sum of
logarithmic absolute error. An overview of different
methods for deriving the prioritizing vectors can be seen
in Fichtner (1986).

LINMAP (Srinivasan and Shocker, 1973) uses ordinal
scaled comparisons of pairs of alternatives. Lam and Choo
(1995) extend the approach by allowing ratio scaled
comparisons of pairs of alternatives to derive the criteria
weights (partial values) of each alternative.

Using the pairwise comparisons technique to collect
preference data for a set of products with respect to the
product's criteria is typical in marketing, especially in
consumer behavioral researches. A well-selected set of
pairwise comparisons is crucial to conjoint analysis
(Green and Srinivasan, 1990) in deriving reliable partial
values that, in turn, provide an accurate evaluation of
potential alternatives.
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3. MODEL FORMULATION

According to the part-worth (partial value) function
model (Green and Srinivasan, 1978), preference for an
alternative j, S, is equal to the sum of » partial values in »
attributes. A partial value can be interpreted as the
preference value of a level in an attribute, If an attribute is
the color of telephones, then the levels can be white, gray,
and red. The partial value for the color red is a
respondents preference value towards this color. Let v and
x be the estimated overall preference values of alternatives
and values of partial values, respectively; then the
part-worth function model posits that the preference value
of alternative j,

n 8p
IR
J pdp
p=1 1=t
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where # is the number of attributes, g, is the number of
levels in attribute p, and y/, a zero one variable, captures
the presence (=1) or absence (=0) of the ith level partial
value in the pth attribute for the jth alternative.

Let @ denote the results of comparing some selected
pairs of alternatives, and (J, &, t) represent that alternative
j is at least #; times preferred to alternative k. We expect
the following:

v, ~t,v, 20, (j.kt,)eQ 2)
Rewriting (2) as LP constraints, we have:
n & n & .
2 25 L X x ) ey e =0,
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where ¢, and e, are deviation variables to incorporate
inconsistencies. Deviation variables also capture the
surplus and slack in equation (2).

Next, similar to the AHP in obtaining information of
attribute pairwise comparisons, fet @ be the set of pairwise
comparisons between the attributes obtained from
pairwise comparison ratio matrix in the AHP. The
importance of an attribute depends on the extended range
of its partial values, that is, the difference between the
maximum and the minimum partial values among the
levels within an attribute. The more important an attribute,
the larger this range should be. For instance, consider that
an attribute has two partial values that are equal to 10 and
11, respectively. This attribute will have less influence on
the overall preference value (of an object) than another
attribute that has two partial values that are equal to 1 and
3, respectively. What only matters is the range of the
partial values, rather than their absolute values.

With respect to the above argument, we can construct
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the constraints as below. Let x,, and x, be the partial
values of the most preferred level and the least preferred
level, respectively in attribute p, then (xpa—xps) will be the
magnitude of the largest difference between the partial
values in attribute p. Furthermore, let ® be the set of
pairwise comparisons between the attributes obtained
from the respondents, (r, s, ) represents that attribute 7 is
at least f, times preferred to attribute s. Then the
constraints comparing attributes can be stated as follows:

—xéb)+dr_s _d:f =O’(r’svtm‘)e (Ds
)

where Jf and 4, are the deviation variables which

(xm - ‘xrb ) - rrs (‘xsa

measure the inconsistencies in the ordering of the
attributes.
Both (]‘;E Q(e,}, + ¢;,) and (rgleq)(d; + d}.) are bad-

ness of fit to the pairwise comparisons in & and ©,
respectively. Our constrained parameter goal program-
ming (CPGP) model can be define as follows:

Min C{ Y (e; +€))+Co{ D (d+d)) (5
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where all variables are non-negative. C) and C» are the
coefficients of the deviational variables in the objective
function. They represent the penalties of two different
kinds of inconsistancies, namely, inconsistancy in prefer-
ence orderings of alternatives and inconsistancy in
preference orderings of attributes. Inequality (8) is a
normalization constraint to avoid the trivial solution: x; =
0 for all j and .

4. MODEL DISCUSSION

There are two points about the model that are worth
noting. The magnitude between C; and C; would depend
on the consistency of the overall values (of attributes)
versus the partial values (of levels). Decision-makers
could try different sets of C; and C, using the training
sample and decide on the one that achieves the best results
in the trials, Typically, a result is said to be satisfactory if
the correlation between the respondents’ input preferences

and the estimated preferences is high, or when the
estimated & best alternatives and the actual % best
alternatives are the same or very similar.

Srinivasan, Jain and Malhortra (1983) suggested
using linear constraints to impose the relative preference
of the levels within the the same attribute. If level a is
preferred to level b in attribute p, then they suggested
adding the following constraint,

xpa-xp,,-i«dfb 20, ©)

where ¢/, is a deviational variable.
Moy et al. (1997) include in their estimation the
pairwise comparisons of the levels within an attribute.
Their model thus collects similar information as that used
in the AHP, where respondents are asked to compare
levels in each attribute. Their constraint can be stated as

follows:
X, =X, +eh, 20,

ab =

(10)

where e/, is a deviational variable, and 2, can be obtained

from the pairwise comparison ratio matrices in the AHP
suggested by Saaty (1990).

Since constraints like those introduced by Srinivasan
et al. (1983), and Moy et al. (1997), which only compare
attribute levels, cannot be used to impose the relative
importance of the attributes, a new type of constraint, like
(7), has to be developed.

When there are many attributes, comparing
alternatives (obtaining # in &) will become more difficult,
constraints (7) might play a more important role since it
considers comparing attributes (obtaining z,, in @), which
are more easily provided by respondents. Consequently,
minimizing inconsistencies in @ becomes more important
or a higher (> value might be more appropriate under this
or similar circumstances.

5. SIMULATION EXPERIMENT

In our simulation experiment, we evaluate the
performance of OLS, the goal-programming model (GP)
by Lam and Choo (1995), and CPGP. We generate four
attributes, each of which has three levels. All partial
values are generated from a normal distribution, N(9,1).
With the three levels in each of the four attributes, 81
alternatives can be generated (i.e. 3'=81). We use
orthogonal arrays (Green, 1974) to choose nine alterna-
tives for the development sample, while the remaining 72
alternatives form the holdout sample. For each of the 81
alternatives, the overall preference value is computed by
using the part-worth function model. In order to simulate
errors made by the respondent while comparing the
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alternatives, a random error is added to each of the nine
overall preference values in the development sample. The
random error has zero mean and its variance, o2, is
computed from the following formula (Wittink and Cattin
1981):

E=0%/(6%+ 62) 1n

where o2 is the error variance and ¢ is the sample

variance of the overall preference values, S, before the
error terms are added. Hence, equation (11) expresses the
ratio of error variance to the total variance. Notice that, if
E=0.1, then ¢2=0.11 ¢, and if E=0.2, then ¢ =025
o2. In this experiment, we use 0.1, 0.2 and 0.3 as the
values for E. We call this set of £ values {Eg}.
Simulating comparisons between attributes from
respondents, we first compute the range of the partial
values in each attribute, and then add a random error to
each of the four ranges of partial values to represent the
error made during each comparison. These distorted
ranges will be used as inputs for constraint (7) in CPGP.
The random error, oZ, has zero mean and variance

computed from formula (11) above and o7 is the sample
variance of the largest difference between the partial
values in an attribute. The set of E values used in this
experiment includes 0.1, 0.2 and 0.3. We call this set of £
values {Eq}.

In each of {Eq} and {Eo}, there are three different £

- Jane W. Moy

values. As a result, there are nine different cases (3 X 3) in
this simulation experiment. We randomly generate 100
data sets for each of these nine cases; hence, we use a total
of 900 data sets in this experiment. The perturbed values
of the nine overall preference values in each of these data
sets are used as inputs in conjoint analysis and solved by
OLS, GP and CPGP. We use LINDO (Schrage, 1989) to
solve all linear programming problems.

Moreover, CPGP has two types of deviational
vatiable, (e),, e;) and (d%,d;). e, and e, capture
inconsistencies in the orderings of the overall preferences,
while ¢,} and 4,; capture inconsistencies in the preference
orderings of the attributes. Thus CPGP becomes a
multi-objective goal-programming problem. We assign
three penalty patterns to minimize the objective function
in CPGP. We choose (Ci: C2)=(1:1), (1:3), and (1:5).
The results obtained from the different methods are
reported in Table 1 and Table 2, which show the average
Spearman rank correlation coefficient and average Pearson
correlation  coefficients, respectively between the
estimated and original preference values of the alternatives
from the holdout sample. The higher the correlation coeffi-
cients, the better the estimates will be.

Naturally, the higher the E,, the weaker the correla-
tion between the original and estimated preference values,
as seen in Table 1. Moreover, note that when we choose
(C1: C))=(1:1), the deviational variables, e;, and e,
would have a much greater impact on CPGP than the

Table 1. The average spearman rank correlation coefficients” between the estimated and original preference values of

the alternatives from holdout samples.

0.2

0.3

0.8346 (0.133)

0.7597 (0.168)

0.8348 (0.134)

0.7596 (0.168)

0.8353 (0.133)
0.8465 (0.138)°
0.8551 (0.133)°

0.7605 (0.167)
0.7801 (0.181)°
0.7954 (0.175)°

0.8353 (0.133)
0.8470 (0.138)°
0.8529 (0.133)°

0.7605 (0.167)
0.7781 (0.182)°
0.7919 (0.174)

Eq

Method 0.1
OLS" 0.9189 (0.057)
GP 0.9199 (0.057)

Eg C:C

1:1 0.9204 (0.057)°
CPGP 0.1 1:3 0.9286 (0.057)°
1:5 0.9343 (0.056)°
1:1 0.9204 (0.057)°
CPGP 0.2 1:3 0.9273 (0.056)°
1:5 0.9317 (0.054)°
1:1 0.9205 (0.057)°
CPGP 0.3 1:3 0.9261 (0.054)°
1:5 0.9270 (0.054)

0.8351 (0.133)°
0.8466 (0.138)°
0.8513 (0.132)°

0.7604 (0.167)
0.7788 (0.179)*
0.7853 (0.180)°

*Values in brackets are standard deviations.

®H, : There is no difference between the average correlation coefficient of OLS and the correlation coefficient of CPGP.
°H, : The correlation coefficient of CPGP is greater than the correlation coefficient of OLS.

dRe:ject H, at @=0.05 level (Paired t-test).
‘Reject Hy at ¢=0.01 level (Paired t-test).
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Table 2. The average pearson correlation coefficients® between the estimated and original preference values of the

alternatives from holdout samples.

0.2

0.3

0.8439 (0.131)

0.7734 (0.164)

0.8440 (0.131)

0.7733 (0.164)

0.8445 (0.131)
0.8558 (0.136)°
0.8646 (0.133)°

0.7743 (0.163)
0.7907 (0.179)°
0.8052 (0.179)°

0.8444 (0.131)
0.8554 (0.136)°
0.8622 (0.133)°

0.7743 (0.163)

0.7890 (0.177)°
0.8020 (0.178)e

Eq

Method 0.1
OLS™ 0.9289 (0.052)
GP 0.9289 (0.052)

Eq;. C G

1:1 0.9295 (0.051)
CPGP 0.1 1:3 0.9366 (0.051)°
1:5 0.9419 (0.051)°
1:1 0.9295 (0.052)
CPGP 0.2 1:3 0.9351 (0.050)°
1:5 0.9392 (0.049)°
1:1 0.9294 (0.051)
CPGP 0.3 1:3 0.9340 (0.048)°
1:5 0.9348 (0.048)

0.8443 (0.130)
0.8547 (0.136)
0.8602 (0.132)°

d

0.7743 (0.163)
0.7900 (0.173)°
0.7954 (0.182)°

*Values in brackets are standard deviations.

°H, : There is no difference between the average correlation coefficient of OLS and the correlation coefficient of CPGP.
“Ha : The correlation coefficient of CPGP is greater than the correlation coefficient of OLS.

dchect H, at o= 0.05 level (Paired t-test).
‘Reject Ho at o= 0.01 level (Paired t-test).

deviational variables, d,7 and ;. The reason is that the

number of deviational variables, ¢, and e,,, in CPGP are
usually much greater than the number of deviational
variables, ¢,7 and d,;. As a result, constraints (7) should
have very little impact on CPGP when (C,: C3)=(1:1)
and the performance of CPGP and GP should be very
similar. This expectation is confirmed by the results in
Table 1 and Table 2. That is why we do not try smaller C»
values in this simulation experiment. Furthermore, when
we gradually increase the value of C;, CPGP becomes
more influenced by constraints (7) and has better
performance, as scen in Table 1 and Table 2.

In Table 1 and Table 2, CPGP obtains higher correla-
tion coefficients than those obtained from GP and OLS.
Furthermore, in most cases these coefficients are statisti-
cally significant. According to the results in Table 1 and
Table 2, the proposed new constraints can improve the
predictive ability of GP. Moreover, CPGP performs better
than OLS in this experiment. Qur new constraints require
pairwise comparisons of attributes similar to those obtained
by AHP. This piece of additional information, intuitively,
should ensure more accurate estimation of partial values
and confirm the value of our constrained optimization
approach in conjoint analysis.

In conjoint analysis, the relative importance of the
attributes in the part-worth function model is usually
measured by the magnitude of the difference between the

largest estimated partial value and the smallest estimated
partial value in the same attribute. Since pairwise
comparisons of the relative importance of attributes can be
obtained directly from respondents, as in the AHP, we put
these pairwise comparisons into a set of linear constraints
and add these constraints to a linear programming model.
The results of the simulation experiment show that the
additional constraints or information, at a relative low cost
to decision-makers, can improve the predictive accuracy
of the linear programming model GP. Furthermore, the
linear programming model with the new constraints has
better performance than ordinary least squares regression
in this experiment.
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