DOI QR코드

DOI QR Code

Application of Response Surface Methodology and Plackett Burman Design assisted with Support Vector Machine for the Optimization of Nitrilase Production by Bacillus subtilis AGAB-2

  • Received : 2022.12.26
  • Accepted : 2023.02.14
  • Published : 2023.03.28

Abstract

Nitrilases are a hydrolase group of enzymes that catalyzes nitrile compounds and produce industrially important organic acids. The current objective is to optimize nitrilase production using statistical methods assisted with artificial intelligence (AI) tool from novel nitrile degrading isolate. A nitrile hydrolyzing bacteria Bacillus subtilis AGAB-2 (GenBank Ascension number- MW857547) was isolated from industrial effluent waste through an enrichment culture technique. The culture conditions were optimized by creating an orthogonal design with 7 variables to investigate the effect of the significant factors on nitrilase activity. On the basis of obtained data, an AI-driven support vector machine was used for the fitted regression, which yielded new sets of predicted responses with zero mean error and reduced root mean square error. The results of the above global optimization were regarded as the theoretical optimal function conditions. Nitrilase activity of 9832 ± 15.3 U/ml was obtained under optimized conditions, which is a 5.3-fold increase in compared to unoptimized (1822 ± 18.42 U/ml). The statistical optimization method involving Plackett Burman Design and Response surface methodology in combination with an AI tool created a better response prediction model with a significant improvement in enzyme production.

Keywords

Acknowledgement

The author gratefully acknowledges Knowledge Consortium of Gujarat (KCG), Govt. of Gujarat for providing financial support through SHODH fellowship scheme (Ref No: 202001640002).

References

  1. Scotti C, Barlow JW. 2022. Natural products containing the nitrile functional group and their biological activities. Nat. Prod. Commun. doi.org/10.1177/1934578X221099973. 
  2. Dash RR, Gaur A, Balomajumder C. 2009. Cyanide in industrial wastewaters and its removal: a review on biotreatment. J. Hazard. Mater. 163: 1-11.  https://doi.org/10.1016/j.jhazmat.2008.06.051
  3. Egelkamp R, Zimmermann T, Schneider D, Hertel R, Daniel R. 2019. Impact of nitriles on bacterial communities. Front. Environ. Sci. 7: 103. 
  4. Cowan D, Cramp R, Pereira R, Graham D, Almatawah Q. 1998. Biochemistry and biotechnology of mesophilic and thermophilic nitrile metabolizing enzymes. Extremophiles 2: 207-216.  https://doi.org/10.1007/s007920050062
  5. Brady D, Beeton A, Zeevaart J, Kgaje C, van Rantwijk F, Sheldon RA. 2004. Characterisation of nitrilase and nitrile hydratase biocatalytic systems. Appl. Microbiol. Biotechnol. 64: 76-85.  https://doi.org/10.1007/s00253-003-1495-0
  6. Bhatt A, Prajapati D, Gupte A. 2021. Current status and future of nitrile catalysis using key nitrilases enzymes and their biotechnological impact. Open Biotechnol. J. 15: 71-81.  https://doi.org/10.2174/1874070702115010071
  7. Mason RL, Gunst RF, Hess JL. 2003. Statistical design and analysis of experiments: with applications to engineering and science. John Wiley & Sons. 
  8. Montgomery DC. 1992. The use of statistical process control and design of experiments in product and process improvement. IIE Trans. 24: 4-17.  https://doi.org/10.1080/07408179208964241
  9. Ghafari S, Hasan M, Aroua MK. 2009. Nitrate remediation in a novel upflow bio-electrochemical reactor (UBER) using palm shell activated carbon as cathode material. Electrochim. Acta 54: 4164-4171.  https://doi.org/10.1016/j.electacta.2009.02.062
  10. Simpson TW, Poplinski JD, Koch PN, Allen JK. 2001. Metamodels for computer-based engineering design: survey and recommendations. Eng. Comput. 17: 129-150.  https://doi.org/10.1007/PL00007198
  11. Yusuf F, Chaubey A, Raina A, Jamwal U, Parshad R. 2013. Enhancing nitrilase production from Fusarium proliferatum using response surface methodology. SpringerPlus 2: 290. 
  12. Bhilare KD, Patil MD, Tangadpalliwar S, Shinde A, Garg P, Banerjee UC. 2019. Machine learning modelling for the ultrasonication-mediated disruption of recombinant E. coli for the efficient release of nitrilase. Ultrasonics 98: 72-81.  https://doi.org/10.1016/j.ultras.2019.06.006
  13. Hameed MM, AlOmar MK, Baniya WJ, AlSaadi MA. 2022. Prediction of high-strength concrete: high-order response surface methodology modeling approach. Eng. Comput. 38: 1655-1668.  https://doi.org/10.1007/s00366-021-01284-z
  14. Cortes C, Vapnik V. 1995. Support-vector networks. Mach. Learn. 20: 273-297.  https://doi.org/10.1007/BF00994018
  15. Desai KM, Survase SA, Saudagar PS, Lele SS, Singhal RS. 2008. Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: case study of fermentative production of scleroglucan. Biochem. Eng. J. 41: 266-273.  https://doi.org/10.1016/j.bej.2008.05.009
  16. Santoshkumar M, Nayak AS, Anjaneya O, Karegoudar TB. 2010. A plate method for screening of bacteria capable of degrading aliphatic nitriles. J. Ind. Microbiol. Biotechnol. 37: 111. 
  17. Black GW, Brown NL, Perry JJ, Randall PD, Turnbull G, Zhang M. 2015. A high-throughput screening method for determining the substrate scope of nitrilases. Chem. Commun. 51: 2660-2662.  https://doi.org/10.1039/C4CC06021K
  18. Sambrook J, Russell DW. 2001. Molecular Cloning: A Laboratory Manual. CSH Laboratory Press, Cold Spring Harbor, NY. 
  19. Thompson JD, Gibson TJ, Higgins DG. 2003. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinformatics Chapter 2:Unit 2.3. 
  20. Xi L, Tan W, Li J, Qu J, Liu J. 2021. Cloning and characterization of a novel thermostable amidase, Xam, from Xinfangfangia sp. DLY26. Biotechnol. Lett. 43: 1395-1402.  https://doi.org/10.1007/s10529-021-03124-y
  21. Singh RV, Sharma H, Koul A, Babu V. 2018. Exploring a broad spectrum nitrilase from moderately halophilic bacterium Halomonas sp. IIIMB2797 isolated from saline lake. J. Basic Microbiol. 58: 867-874.  https://doi.org/10.1002/jobm.201800168
  22. Plackett RL, Burman JP. 1946. The design of optimum multifactorial experiments. Biometrika 33: 305-325.  https://doi.org/10.1093/biomet/33.4.305
  23. Shojae Chaeikar S, Manaf AA, Alarood AA, Zamani M. 2020. PFW: polygonal fuzzy weighted - an SVM kernel for the classification of overlapping data groups. Electronics 9: 615. 
  24. Meyer D, Leisch F, Hornik K. 2003. The support vector machine under test. Neurocomputing 55: 169-186.  https://doi.org/10.1016/S0925-2312(03)00431-4
  25. Banerjee A, Kaul P, Banerjee UC. 2006. Enhancing the catalytic potential of nitrilase from Pseudomonas putida for stereoselective nitrile hydrolysis. Appl. Microbiol. Biotechnol. 72: 77-87.  https://doi.org/10.1007/s00253-005-0255-8
  26. He YC, Zhou Q, Ma CL, Cai ZQ, Wang LQ, Zhao XY, et al. 2012. Biosynthesis of benzoylformic acid from benzoyl cyanide by a newly isolated Rhodococcus sp. CCZU10-1 in toluene-water biphasic system. Bioresour. Technol. 115: 88-95.  https://doi.org/10.1016/j.biortech.2011.09.084
  27. Antunes VLM, Gomes MTS. 2022. A new analytical method to quantify ammonia in freshwater with a bulk acoustic wave sensor. Sensors 22: 1528. 
  28. Santoshkumar M, Veeranagouda Y, Lee K, Karegoudar TB. 2011. Utilization of aliphatic nitrile by Paracoccus sp. SKG isolated from chemical waste samples. Int. Biodeterior. Biodegradation 65: 153-159.  https://doi.org/10.1016/j.ibiod.2010.10.008
  29. Ogunyemi AK, Samuel TA, Amund OO, Ilori MO. 2019. Nitrile-metabolizing bacterial strains associated with municipal waste tips in the Lagos Metropolis, Nigeria. 
  30. Kao CM, Chen KF, Liu JK, Chou SM, Chen SC. 2006. Enzymatic degradation of nitriles by Klebsiella oxytoca. Appl. Microbiol. Biotechnol. 71: 228-233.  https://doi.org/10.1007/s00253-005-0129-0
  31. Montano Lopez J, Duran L, Avalos JL. 2022. Physiological limitations and opportunities in microbial metabolic engineering. Nat. Rev. Microbiol. 20: 35-48.  https://doi.org/10.1038/s41579-021-00600-0
  32. Thakur N, Bhalla TC. 2022. An improved process for synthesis of nicotinic acid using hyper induced whole cell nitrilase of Gordonia terrae MTCC8139. 3 Biotech 12: 303. 
  33. Duca D, Rose DR, Glick BR. 2014. Characterization of a nitrilase and a nitrile hydratase from Pseudomonas sp. strain UW4 that converts indole-3-acetonitrile to indole-3-acetic acid. Appl. Environ. Microbiol. 80: 4640-4649.  https://doi.org/10.1128/AEM.00649-14
  34. Yang C, Wang X, Wei D. 2011. A new nitrilase-producing strain named Rhodobacter sphaeroides LHS-305: biocatalytic characterization and substrate specificity. Appl. Biochem. Biotechnol. 165: 1556-1567.  https://doi.org/10.1007/s12010-011-9375-z
  35. Majou D, Christieans S. 2018. Mechanisms of the bactericidal effects of nitrate and nitrite in cured meats. Meat Sci. 145: 273-284.  https://doi.org/10.1016/j.meatsci.2018.06.013
  36. Rajagopalan KV, Fridovich I, Handler P. 1961. Competitive inhibition of enzyme activity by urea. J. Biol. Chem. 236: 1059-1065.  https://doi.org/10.1016/S0021-9258(18)64242-5
  37. Zheng YG, Chen J, Liu ZQ, Wu MH, Xing LY, Shen YC. 2008. Isolation, identification and characterization of Bacillus subtilis ZJB063, a versatile nitrile-converting bacterium. Appl. Microbiol. Biotechnol. 77: 985-993.  https://doi.org/10.1007/s00253-007-1236-x
  38. Almatawah QA, Cramp R, Cowan DA. 1999. Characterization of an inducible nitrilase from a thermophilic bacillus. Extremophiles 3: 283-291.  https://doi.org/10.1007/s007920050129
  39. Chen J, Zheng YG, Shen YC. 2008. Biotransformation of p-methoxyphenylacetonitrile into p-methoxyphenylacetic acid by resting cells of Bacillus subtilis. Biotechnol. Appl. Biochem. 50: 147-153.  https://doi.org/10.1042/BA20070106
  40. Prajapati D, Bhatt A, Gupte A. 2022. Production, optimization, partial-purification and pyrolysis kinetic studies of exopolysaccharide from a native brown-rot fungi Fomitopsis meliae AGDP-2. Bioresour. Technol. Rep. 17: 100948. 
  41. Gopirajan PV, Gopinath KP, Sivaranjani G, Arun J. 2021. Optimization of hydrothermal liquefaction process through machine learning approach: process conditions and oil yield. Biomass Convers. Biorefin. 13: 1213-1222.  https://doi.org/10.1007/s13399-020-01233-8
  42. Rabiya R, Sen R. 2022. Artificial intelligence driven advanced optimization strategy vis-a-vis response surface optimization of production medium: Bacterial exopolysaccharide production as a case-study. Biochem. Eng. J. 178: 108271.