Acknowledgement
The author gratefully acknowledges Knowledge Consortium of Gujarat (KCG), Govt. of Gujarat for providing financial support through SHODH fellowship scheme (Ref No: 202001640002).
References
- Scotti C, Barlow JW. 2022. Natural products containing the nitrile functional group and their biological activities. Nat. Prod. Commun. doi.org/10.1177/1934578X221099973.
- Dash RR, Gaur A, Balomajumder C. 2009. Cyanide in industrial wastewaters and its removal: a review on biotreatment. J. Hazard. Mater. 163: 1-11. https://doi.org/10.1016/j.jhazmat.2008.06.051
- Egelkamp R, Zimmermann T, Schneider D, Hertel R, Daniel R. 2019. Impact of nitriles on bacterial communities. Front. Environ. Sci. 7: 103.
- Cowan D, Cramp R, Pereira R, Graham D, Almatawah Q. 1998. Biochemistry and biotechnology of mesophilic and thermophilic nitrile metabolizing enzymes. Extremophiles 2: 207-216. https://doi.org/10.1007/s007920050062
- Brady D, Beeton A, Zeevaart J, Kgaje C, van Rantwijk F, Sheldon RA. 2004. Characterisation of nitrilase and nitrile hydratase biocatalytic systems. Appl. Microbiol. Biotechnol. 64: 76-85. https://doi.org/10.1007/s00253-003-1495-0
- Bhatt A, Prajapati D, Gupte A. 2021. Current status and future of nitrile catalysis using key nitrilases enzymes and their biotechnological impact. Open Biotechnol. J. 15: 71-81. https://doi.org/10.2174/1874070702115010071
- Mason RL, Gunst RF, Hess JL. 2003. Statistical design and analysis of experiments: with applications to engineering and science. John Wiley & Sons.
- Montgomery DC. 1992. The use of statistical process control and design of experiments in product and process improvement. IIE Trans. 24: 4-17. https://doi.org/10.1080/07408179208964241
- Ghafari S, Hasan M, Aroua MK. 2009. Nitrate remediation in a novel upflow bio-electrochemical reactor (UBER) using palm shell activated carbon as cathode material. Electrochim. Acta 54: 4164-4171. https://doi.org/10.1016/j.electacta.2009.02.062
- Simpson TW, Poplinski JD, Koch PN, Allen JK. 2001. Metamodels for computer-based engineering design: survey and recommendations. Eng. Comput. 17: 129-150. https://doi.org/10.1007/PL00007198
- Yusuf F, Chaubey A, Raina A, Jamwal U, Parshad R. 2013. Enhancing nitrilase production from Fusarium proliferatum using response surface methodology. SpringerPlus 2: 290.
- Bhilare KD, Patil MD, Tangadpalliwar S, Shinde A, Garg P, Banerjee UC. 2019. Machine learning modelling for the ultrasonication-mediated disruption of recombinant E. coli for the efficient release of nitrilase. Ultrasonics 98: 72-81. https://doi.org/10.1016/j.ultras.2019.06.006
- Hameed MM, AlOmar MK, Baniya WJ, AlSaadi MA. 2022. Prediction of high-strength concrete: high-order response surface methodology modeling approach. Eng. Comput. 38: 1655-1668. https://doi.org/10.1007/s00366-021-01284-z
- Cortes C, Vapnik V. 1995. Support-vector networks. Mach. Learn. 20: 273-297. https://doi.org/10.1007/BF00994018
- Desai KM, Survase SA, Saudagar PS, Lele SS, Singhal RS. 2008. Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: case study of fermentative production of scleroglucan. Biochem. Eng. J. 41: 266-273. https://doi.org/10.1016/j.bej.2008.05.009
- Santoshkumar M, Nayak AS, Anjaneya O, Karegoudar TB. 2010. A plate method for screening of bacteria capable of degrading aliphatic nitriles. J. Ind. Microbiol. Biotechnol. 37: 111.
- Black GW, Brown NL, Perry JJ, Randall PD, Turnbull G, Zhang M. 2015. A high-throughput screening method for determining the substrate scope of nitrilases. Chem. Commun. 51: 2660-2662. https://doi.org/10.1039/C4CC06021K
- Sambrook J, Russell DW. 2001. Molecular Cloning: A Laboratory Manual. CSH Laboratory Press, Cold Spring Harbor, NY.
- Thompson JD, Gibson TJ, Higgins DG. 2003. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinformatics Chapter 2:Unit 2.3.
- Xi L, Tan W, Li J, Qu J, Liu J. 2021. Cloning and characterization of a novel thermostable amidase, Xam, from Xinfangfangia sp. DLY26. Biotechnol. Lett. 43: 1395-1402. https://doi.org/10.1007/s10529-021-03124-y
- Singh RV, Sharma H, Koul A, Babu V. 2018. Exploring a broad spectrum nitrilase from moderately halophilic bacterium Halomonas sp. IIIMB2797 isolated from saline lake. J. Basic Microbiol. 58: 867-874. https://doi.org/10.1002/jobm.201800168
- Plackett RL, Burman JP. 1946. The design of optimum multifactorial experiments. Biometrika 33: 305-325. https://doi.org/10.1093/biomet/33.4.305
- Shojae Chaeikar S, Manaf AA, Alarood AA, Zamani M. 2020. PFW: polygonal fuzzy weighted - an SVM kernel for the classification of overlapping data groups. Electronics 9: 615.
- Meyer D, Leisch F, Hornik K. 2003. The support vector machine under test. Neurocomputing 55: 169-186. https://doi.org/10.1016/S0925-2312(03)00431-4
- Banerjee A, Kaul P, Banerjee UC. 2006. Enhancing the catalytic potential of nitrilase from Pseudomonas putida for stereoselective nitrile hydrolysis. Appl. Microbiol. Biotechnol. 72: 77-87. https://doi.org/10.1007/s00253-005-0255-8
- He YC, Zhou Q, Ma CL, Cai ZQ, Wang LQ, Zhao XY, et al. 2012. Biosynthesis of benzoylformic acid from benzoyl cyanide by a newly isolated Rhodococcus sp. CCZU10-1 in toluene-water biphasic system. Bioresour. Technol. 115: 88-95. https://doi.org/10.1016/j.biortech.2011.09.084
- Antunes VLM, Gomes MTS. 2022. A new analytical method to quantify ammonia in freshwater with a bulk acoustic wave sensor. Sensors 22: 1528.
- Santoshkumar M, Veeranagouda Y, Lee K, Karegoudar TB. 2011. Utilization of aliphatic nitrile by Paracoccus sp. SKG isolated from chemical waste samples. Int. Biodeterior. Biodegradation 65: 153-159. https://doi.org/10.1016/j.ibiod.2010.10.008
- Ogunyemi AK, Samuel TA, Amund OO, Ilori MO. 2019. Nitrile-metabolizing bacterial strains associated with municipal waste tips in the Lagos Metropolis, Nigeria.
- Kao CM, Chen KF, Liu JK, Chou SM, Chen SC. 2006. Enzymatic degradation of nitriles by Klebsiella oxytoca. Appl. Microbiol. Biotechnol. 71: 228-233. https://doi.org/10.1007/s00253-005-0129-0
- Montano Lopez J, Duran L, Avalos JL. 2022. Physiological limitations and opportunities in microbial metabolic engineering. Nat. Rev. Microbiol. 20: 35-48. https://doi.org/10.1038/s41579-021-00600-0
- Thakur N, Bhalla TC. 2022. An improved process for synthesis of nicotinic acid using hyper induced whole cell nitrilase of Gordonia terrae MTCC8139. 3 Biotech 12: 303.
- Duca D, Rose DR, Glick BR. 2014. Characterization of a nitrilase and a nitrile hydratase from Pseudomonas sp. strain UW4 that converts indole-3-acetonitrile to indole-3-acetic acid. Appl. Environ. Microbiol. 80: 4640-4649. https://doi.org/10.1128/AEM.00649-14
- Yang C, Wang X, Wei D. 2011. A new nitrilase-producing strain named Rhodobacter sphaeroides LHS-305: biocatalytic characterization and substrate specificity. Appl. Biochem. Biotechnol. 165: 1556-1567. https://doi.org/10.1007/s12010-011-9375-z
- Majou D, Christieans S. 2018. Mechanisms of the bactericidal effects of nitrate and nitrite in cured meats. Meat Sci. 145: 273-284. https://doi.org/10.1016/j.meatsci.2018.06.013
- Rajagopalan KV, Fridovich I, Handler P. 1961. Competitive inhibition of enzyme activity by urea. J. Biol. Chem. 236: 1059-1065. https://doi.org/10.1016/S0021-9258(18)64242-5
- Zheng YG, Chen J, Liu ZQ, Wu MH, Xing LY, Shen YC. 2008. Isolation, identification and characterization of Bacillus subtilis ZJB063, a versatile nitrile-converting bacterium. Appl. Microbiol. Biotechnol. 77: 985-993. https://doi.org/10.1007/s00253-007-1236-x
- Almatawah QA, Cramp R, Cowan DA. 1999. Characterization of an inducible nitrilase from a thermophilic bacillus. Extremophiles 3: 283-291. https://doi.org/10.1007/s007920050129
- Chen J, Zheng YG, Shen YC. 2008. Biotransformation of p-methoxyphenylacetonitrile into p-methoxyphenylacetic acid by resting cells of Bacillus subtilis. Biotechnol. Appl. Biochem. 50: 147-153. https://doi.org/10.1042/BA20070106
- Prajapati D, Bhatt A, Gupte A. 2022. Production, optimization, partial-purification and pyrolysis kinetic studies of exopolysaccharide from a native brown-rot fungi Fomitopsis meliae AGDP-2. Bioresour. Technol. Rep. 17: 100948.
- Gopirajan PV, Gopinath KP, Sivaranjani G, Arun J. 2021. Optimization of hydrothermal liquefaction process through machine learning approach: process conditions and oil yield. Biomass Convers. Biorefin. 13: 1213-1222. https://doi.org/10.1007/s13399-020-01233-8
- Rabiya R, Sen R. 2022. Artificial intelligence driven advanced optimization strategy vis-a-vis response surface optimization of production medium: Bacterial exopolysaccharide production as a case-study. Biochem. Eng. J. 178: 108271.