In common with workers in hydrologic fields, scientists and engineers relate one variable to two or more other variables for purposes of predication, optimization, and control. Statistics methods have improved to establish such relationships. Regression, as it is called, is indeed the most commonly used statistics technique in hydrologic fields; relationship between the monitored variable stage and the corresponding discharges(rating curve). Regression methods expressed in the form of mathematical equations which has parameters, so called parametric methods. some times, the establishment of parameters is complicated and uncertain. Many non-parametric regression methods which have not parameters, have been proposed and studied. The most popular of these are kernel regression method. Kernel regression offer a way of estimation the regression function without the specification of a parametric model. This paper conducted comparisons of some bandwidth selection methods which are using the least squares and cross-validation.
Oh, Hyunsoo;Chang, Seong Rok;Kim, Younghwan;Lee, Chang Jun
Journal of the Korean Society of Safety
/
v.29
no.4
/
pp.153-159
/
2014
Low back pain is one of major issues in musculoskeletal diseases mainly caused by MMH (Manual Material Handling) tasks. In Korea, the standards of NIOSH(National Institute for Occupational Safety and Health) Lift Equations in U. S. A. have been most widely used. However, there is no standard in case the height of one feet is higher than that of another one. Moreover, since the standards are developed in U. S. A., there are many limitations for the applicability of Korean workers. In this study, MVC(Maximum Voluntary Contraction) for four postures are measured and an empirical model based on SVR(Support Vector Regression) is constructed. Constructing SVR model, PSO(Particle Swarm Optimization) is employed to investigate the optimal parameters of SVR. The results show that the performance of this empirical model is approximately accurate, even if the deviation of experimental values is large due to the individual differences. This empirical model may contribute to establish the standards of MMH tasks in Korea.
We propose a network traffic prediction model based on linear and nonlinear model combination. Network traffic is modeled by an autoregressive moving average model, and the error between the measured and predicted network traffic values is obtained. Then, an echo state network is used to fit the prediction error with nonlinear components. In addition, an improved slime mold algorithm is proposed for reservoir parameter optimization of the echo state network, further improving the regression performance. The predictions of the linear (autoregressive moving average) and nonlinear (echo state network) models are added to obtain the final prediction. Compared with other prediction models, test results on two network traffic datasets from mobile and fixed networks show that the proposed prediction model has a smaller error and difference measures. In addition, the coefficient of determination and index of agreement is close to 1, indicating a better data fitting performance. Although the proposed prediction model has a slight increase in time complexity for training and prediction compared with some models, it shows practical applicability.
The paper addresses contribution to the modeling and optimization of major machinability parameters (cutting force, surface roughness, and tool wear) in finish dry hard turning (FDHT) for machinability evaluation of hardened AISI grade die steel D3 with PVD-TiN coated (Al2O3-TiCN) mixed ceramic tool insert. The turning trials are performed based on Taguchi's L18 orthogonal array design of experiments for the development of regression model as well as adequate model prediction by considering tool approach angle, nose radius, cutting speed, feed rate, and depth of cut as major machining parameters. The models or correlations are developed by employing multiple regression analysis (MRA). In addition, statistical technique (response surface methodology) followed by computational approaches (genetic algorithm and particle swarm optimization) have been employed for multiple response optimization. Thereafter, the effectiveness of proposed three (RSM, GA, PSO) optimization techniques are evaluated by confirmation test and subsequently the best optimization results have been used for estimation of energy consumption which includes savings of carbon footprint towards green machining and for tool life estimation followed by cost analysis to justify the economic feasibility of PVD-TiN coated Al2O3+TiCN mixed ceramic tool in FDHT operation. Finally, estimation of energy savings, economic analysis, and sustainability assessment are performed by employing carbon footprint analysis, Gilbert approach, and Pugh matrix, respectively. Novelty aspects, the present work: (i) contributes to practical industrial application of finish hard turning for the shaft and die makers to select the optimum cutting conditions in a range of hardness of 45-60 HRC, (ii) demonstrates the replacement of expensive, time-consuming conventional cylindrical grinding process and proposes the alternative of costlier CBN tool by utilizing ceramic tool in hard turning processes considering technological, economical and ecological aspects, which are helpful and efficient from industrial point of view, (iii) provides environment friendliness, cleaner production for machining of hardened steels, (iv) helps to improve the desirable machinability characteristics, and (v) serves as a knowledge for the development of a common language for sustainable manufacturing in both research field and industrial practice.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.41
no.7
/
pp.524-531
/
2013
This work aims at developing a RTB (Rotor Track and Balance) system to alleviate imbalances originating from various sources encountered during blade manufacturing process and environmental factors. The analytical RTB model is determined based on the linear regression analysis to relate the RTB adjustment parameters and their track and vibration results. The model is validated using the flight test data of a full helicopter. It is demonstrated that the linearized model has been correlated well with the test data. A hybrid optimization problem is formulated to find the best solution of the RTB adjustment parameters using the genetic algorithm combined with the PSO (Particle Swarm Optimization) algorithm. The optimization results reveal that both track deviations and vibration levels under various flight conditions become decreased within the allowable tolerances.
The Transactions of the Korean Institute of Electrical Engineers D
/
v.53
no.6
/
pp.415-424
/
2004
In this paper, we introduce and investigate a new category of rule-based fuzzy inference system based on Information Granulation(IG). The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of “If..., then...” statements, and exploits the theory of system optimization and fuzzy implication rules. The form of the fuzzy rules comes with three types of fuzzy inferences: a simplified one that involves conclusions that are fixed numeric values, a linear one where the conclusion part is viewed as a linear function of inputs, and a regression polynomial one as the extended type of the linear one. By the nature of the rule-based fuzzy systems, these fuzzy models are geared toward capturing relationships between information granules. The form of the information granules themselves becomes an important design features of the fuzzy model. Information granulation with the aid of HCM(Hard C-Means) clustering algorithm hell)s determine the initial parameters of rule-based fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial function being used in the Premise and consequence Part of the fuzzy rules. And then the initial Parameters are tuned (adjusted) effectively with the aid of the improved complex method(ICM) and the standard least square method(LSM). In the sequel, the ICM and LSM lead to fine-tuning of the parameters of premise membership functions and consequent polynomial functions in the rules of fuzzy model. An aggregate objective function with a weighting factor is proposed in order to achieve a balance between performance of the fuzzy model. Numerical examples are included to evaluate the performance of the proposed model. They are also contrasted with the performance of the fuzzy models existing in the literature.
Transactions on Control, Automation and Systems Engineering
/
v.2
no.4
/
pp.268-273
/
2000
Plasma models are crucial to equipment design and process optimization. A radial basis function network(RBFN) in con-junction with statistical experimental design has been used to model a process plasma. A 2$^4$ full factorial experiment was employed to characterized a hemispherical inductively coupled plasma(HICP) in characterizing HICP, the factors that were varied in the design include source power, pressure, position of shuck holder, and Cl$_2$ flow rate. Using a Langmuir probe, plasma attributes were collected, which include typical electron density, electron temperature. and plasma potential as well as their spatial uniformity. Root mean-squared prediction errors of RBEN are 0.409(10(sup)12/㎤), 0.277(eV), and 0.699(V), for electron density, electron temperature, and Plasma potential, respectively. For spatial uniformity data, they are 2.623(10(sup)12/㎤), 5.704(eV) and 3.481(V), for electron density, electron temperature, and plasma potential, respectively. Comparisons with generalized regression neural network(GRNN) revealed an improved prediction accuracy of RBFN as well as a comparable performance between GRNN and statistical response surface model. Both RBEN and GRNN, however, experienced difficulties in generalizing training data with smaller standard deviation.
Recently, the study in efficient operation, maintenance, and equipment-design have been growing rapidly in military industry to meet the required missions. Through out these studies, the importance of Concurrent Spare Parts(CSP) are emphasized. The CSP, which is critical to the operation and maintenance to enhance the availability, is offered together when a equipment is delivered. Despite its significance, th responsibility for determining the range and depth of CSP are done from administrative decision rather than engineering analysis. The purpose of the paper is to optimize the number of CSP per item using simulation and multiple regression. First, the result, as the change of operational availability, was gained from changing the number of change in simulation model. Second, mathematical regression was computed from the input and output data, and the number of CSP was optimized by multiple regression and linear programming; the constraint condition is the cost for optimization. The advantage of this study is to respond with the transition of constraint condition quickly. The cost per item is consistently altered in the development state of equipment. The speed of analysis, that simulation method is continuously performed whenever constraint condition is repeatedly altered, would be down. Therefore, this study is suitable for real development environment. In the future, the study based on the above concept improves the accuracy of optimization by the technical progress of multiple regression.
Journal of the Korean Society for Precision Engineering
/
v.17
no.2
/
pp.80-88
/
2000
This paper presents a method to optimize the bump steer characteristics (the change of toe angle with vertical wheel travel) with respect to hard points in the double wishbone front suspension of the four-wheel-drive vehicle using the design of experiment, multibody dynamics simulation, and optimum design program. Front and rear suspensions are modeled as the interconnection of rigid bodies by kinematic joints and force elements using DADS. The design variables with respect to the kinematic characteristics are obtained through the experimental design sensitivity analysis. An object function is defined as the area of absolute differences between the desired and experimental toe angle. By the design of experiment and regression analysis, the regression model function of bump steer characteristics is extracted. The design variables that make the toe angle optimized are selected using the optimum design program DOT. The lane change simulations and tests of the full vehicle models are implemented to evaluate the improvement of vehicle handling performances by the optimization of front bump steer characteristics. The results of the lane change simulations show that the vehicle with optimized bump steer has the weaker understeer tendency than the vehicle with initial bump steer.
Purpose: This study used ESG grade, but defined AESG, adjusted to the size of a company and examines whether it can be used as an investment strategy. Research design, data and methodology: The analysis sample in this study is a company that has given an ESG rating among companies listed on the Korea Stock Exchange. We examine the results through portfolio analysis and Fama-macbeth regression analysis. Results: As result of examining the long-only performance and the long-short performance by constructing quintile portfolios, it was observed that a significant positive return was shown. It was observed that there was an alpha that could not be explained in asset pricing models. Also, AESG had a return prediction effect in the result of a Fama-Macbeth regression that controlled corporate characteristic variables in individual stocks. Next, we confirmed AESG's usage through various portfolio composition. In the portfolio optimization, the Risk Efficient method was the most superior in terms of sharpe ratio and the construct multi-factor model with Value, Momentum and Low Vol showed statistically significant performance improvement. Conclusions: The results of this study suggest that it can be helpful in ESG investment to reflect the ESG rating of relatively small companies more through the scale adjustment of the ESG rating (i.e.AESG).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.