DOI QR코드

DOI QR Code

Rotor Track and Balance of a Helicopter Rotor System Using Modern Global Optimization Schemes

최신의 전역 최적화 기법에 기반한 헬리콥터 동적 밸런싱 구현에 관한 연구

  • You, Younghyun (Department of Aerospace Information Engineering, Konkuk University) ;
  • Jung, Sung Nam (Department of Aerospace Information Engineering, Konkuk University) ;
  • Kim, Chang Ju (Department of Aerospace Information Engineering, Konkuk University) ;
  • Kim, Oe Cheul (Korea Aerospace Industries, Ltd.)
  • Received : 2013.04.26
  • Accepted : 2013.06.26
  • Published : 2013.07.01

Abstract

This work aims at developing a RTB (Rotor Track and Balance) system to alleviate imbalances originating from various sources encountered during blade manufacturing process and environmental factors. The analytical RTB model is determined based on the linear regression analysis to relate the RTB adjustment parameters and their track and vibration results. The model is validated using the flight test data of a full helicopter. It is demonstrated that the linearized model has been correlated well with the test data. A hybrid optimization problem is formulated to find the best solution of the RTB adjustment parameters using the genetic algorithm combined with the PSO (Particle Swarm Optimization) algorithm. The optimization results reveal that both track deviations and vibration levels under various flight conditions become decreased within the allowable tolerances.

본 연구에서는 헬리콥터 로터 블레이드의 제작 과정 및 여러 가지 요인으로 인해 발생하는 불균형성을 해소하기 위한 RTB(Rotor Track and Balance) 알고리즘을 개발하였다. 비행 시험 결과로부터 RTB 조절 값과 트랙 및 기체 진동 사이의 상호관계를 선형모델을 이용한 회귀분석을 통하여 RTB 모델을 구축하였다. 개발된 RTB 알고리즘을 실기 시험 결과에 적용하여 RTB 모델을 검증하였고 선형화 모델만으로도 비교적 정확한 모델링이 가능함을 확인하였다. RTB 조절값 설정을 위해 최적화 문제를 정식화하고 유전자 알고리즘에 입자 군집 최적화(PSO) 알고리즘을 결합하여 빠른 수렴성을 갖는 최신의 최적화 기법을 적용하였다. 또한 최적화 해석을 통하여 얻은 RTB 조절값을 이용하여 트랙 편차와 기체 진동을 허용 기준치 아래로 감소시키고, 다양한 비행 조건에 대하여 효율적인 RTB를 수행할 수 있음을 보였다.

Keywords

References

  1. Rosen, A. and Ben-Ari, R., "Mathematical Modeling of A Helicopter Rotor Track and Balance: Theory,", Journal of Sound and Vibration, Vol. 200, No. 5, 1997, pp.589-603. https://doi.org/10.1006/jsvi.1996.0669
  2. Rosen, A. and Ben-Ari, R., "Mathematical Modeling of A Helicopter Rotor Track and Balance: Results,", Journal of Sound and Vibration, Vol. 200, No. 5, 1997, pp.605-620. https://doi.org/10.1006/jsvi.1996.0670
  3. Miller, N. A. and Kunz, D. L., "A Comparison of Main Rotor Smoothing Adjustments using Linear and Neural Network Algorithms,", Journal of Sound and Vibration, Vol. 311, 2008, pp.991-1003. https://doi.org/10.1016/j.jsv.2007.09.041
  4. Ferrer, R., Krysinski, T., Aubourg, P. A. and Bellizzi, S., "New Methods for Rotor Tracking and Balance Tuning and Defect Detection Applied to Eurocopter Products," AHS 57th Annual Forum, Washington, DC., May., 2001.
  5. Wang, S., Danai, K. and Wilson, M., "Adaptive Method of Helicopter Track and Balance," Journal of Dynamic Systems, Measurement, and Control, Vol. 127, June. 2005.
  6. Yang, D., Wang, S. and Danai, K., "Helicopter Track and Balance by Interval Modeling," American Helicopter Society 57th Annual Forum, Washington, DC., May. 2001.
  7. Honmei, L., Yunlong, C., Chen, L. and Jiahui, L., "Helicopter Rotor Smoothing Based on GRNN Neural Network and Genetic Algorithm," Journal of Beijing University of Aeronautics and Astronautics, Vol. 34, No. 5, Aug. 2009, pp. 507-511.
  8. Bechhoefer, E. and Power, D., "IMD HUMS Rotor Track and Balance Techniques," Aerospace Conference, Vol. 7, Mar. 2003.
  9. Kim, Y. S., Lee, M. K. and Choi, S. W., "Balancing of Tiltrotor UAV Rotor System," Proceeding of the 2012 KSAS Fall Conference, pp.2435-2441.
  10. Kim, D. K., Yun, C. Y., Kim, S. B., Song, K. W., Kang, S. N. and Han, J. H., "A Conceptional Study on the Dynamic Balancing of Helicopter Main Rotor Blade," Proceeding of the KSNVE 2009 Spring Conference, pp.373-374.
  11. Kwon, H. J., Yu, Y. H., Jung, S. N. and Yun, C. Y., "Development of Dynamic Balancing Techniques of a Rotor System Using Genetic Algorithm," Journal of the KSAS, Vol. 38, No. 12, 2010, pp.1162-1169. https://doi.org/10.5139/JKSAS.2010.38.12.1162
  12. Goldberg, D. E., "Genetic Algorithms in Search, Optimization, and Machine Learning," Addison-Wesley, 1989.
  13. Takahama, T., Sakai, S. and Iwane, N., "Constrained Optimization by the  Constrained Hybrid Algorithm of Particle Swarm Optimization and Genetic Algorithm," Springer, AI 2005, LNAI 3809, 2005, pp.389-400.
  14. Kao, Y. T. and Zahara, E., "A Hybrid Genetic Algorithm and Particle Swarm Optimization for Multimodal Functions," Applied Soft Computing, Vol. 8, No. 2, 2008, pp.849-857. https://doi.org/10.1016/j.asoc.2007.07.002
  15. Dhadwal, M. K., Jung, S. N. and Kim, T. J., "A Hybrid of Particle Swarm and Genetic Algorithm for Constrained Real-Parameter Optimization," Proceeding of the KSAS 2013 Spring Conference.

Cited by

  1. Shift Steering Control of 2-axis ARM Helicopter based on a Neural Network vol.21, pp.7, 2015, https://doi.org/10.5302/J.ICROS.2015.15.0033
  2. Study on the Optimal Selection of Rotor Track and Balance Parameters using Non-linear Response Models and Genetic Algorithm vol.44, pp.11, 2016, https://doi.org/10.5139/JKSAS.2016.44.11.989