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Modeling of Process Plasma Using a Radial
Basis Function Network: A Case Study

Byungwhan Kim and Sungjin Park

Abstract: Plasma models are crucial to equipment design and process optimization. A radial basis function network (RBFN) in con-
junction with statistical experimental design has been used to model a process plasma. A 2* full factorial experiment was employed
to characterize a hemispherical inductively coupled plasma (HICP). In characterizing HICP, the factors that were varied in the design
include source power, pressure, position of chuck holder, and Cl, flow rate. Using a Langmuir probe, plasma attributes were collected,
which include typical electron density, electron temperature, and plasma potential as well as their spatial uniformity. Root mean-
squared prediction errors of RBFN are 0.409 (10"%/cm®), 0.277 (eV), and 0.669 (V), for electron density, electron temperature, and
plasma potential, respectively. For spatial uniformity data, they are 2.623 (10'%/ cm®), 5.074 (eV), and 3.481 (V), for electron density,
electron temperature, and plasma potential, respectively. Comparisons with generalized regression neural network (GRNN) revealed
an improved prediction accuracy of RBFN as well as a comparable performance between GRNN and statistical response surface
model. Both RBFN and GRNN, however, experienced difficulties in generalizing training data with smaller standard deviation.
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L Introduction

Plasma processing plays a critical role in either depositing
thin films or etching fine patterns during integrated circuit (IC)
manufacturing. Rather than relying upon simulation technique,
IC processes have been mostly optimized through extensive
experimentation. This mainly stems from the fact that an accu-
rate modeling of plasma or process is extremely difficult due
to the highly nonlinear particle dynamics within the plasma.
Historically, the plasma has been modeled using the first prin-
ciple physics involving continuity, momentum balance, and
energy balance inside a high frequency, high intensity electric
or magnetic field or both [1][2]. First principle models cur-
rently available attempt to derive self-consistent solutions to
complex physical equations by means of computationally
intensive numerical simulation methods, which typically pro-
duce distribution profiles of electrons and ions within the
plasma. Although simulations are somewhat useful for equip-
ment design and optimization, they are subject to many sim-
plifying assumptions and thus predictions from the models
often deviate much from their actual values. Since IC process
simulation is based on a variety of predicted plasma attributes
(such as electron density or radicals), this inconsistency is
likely to yield suspicious process attributes (such as etch rate
or profile). Another approach is to derive statistical response
surface model (RSM), which is widely used in IC process
optimization and control. Despite their popularity, meanwhile,
RSM are inherently limited in that they attempt to linearize
nonlinear data, thus leading to a relatively large prediction
error for certain operational-parameter space.

Recently, neural networks have been applied to model vari-
ous IC manufacturing processes [3][9]. The network approach
differs from the RSM in that it learns complex plasma data
both adaptively and nonlinearly without any linearization re-
quired in the RSM. Of neural networks, backpropagation neu-
ral network (BPNN) [10] is the most widely employed para-
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digm. Applicability of other networks to plasma modeling has
rarely been explored. In this study, thus, a radial basis function
network (RBFN) [11] is introduced for plasma modeling.
RBFN models were further compared to those from general-
ized regression neural network (GRNN) [12] and RSM. The
plasma modeled is referred to as a hemispherical inductively
coupled plasma (HICP). The HICP behaviors were character-
ized by a 2* factorial experiment [13], in which the factors that
were varied include source power, pressure, position of chuck
holder, and chroline (Cl,) flow rate. Plasma attributes col-
lected with Langmuir probe include electron density, electron
temperature, and plasma potential as well as their spatial uni-
formities.

II. Experimental data
The HICP was generated from an etch system depicted in
Fig. 1. Hemispherically shaped chamber has 10 turns of coils
outside it and by feeding a 13.56MHz radio frequency power
to it the plasma is then created.
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Fig. 1. A schematic diagram of inductively coupled
flasma etch system.
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The HICP behaviors were characterized with a 2* full facto-
rial experiment. The factors that were varied in the design are
contained in Table 1with their experimental ranges. Using the
Langmuir probe, fundamental plasma attributes were collected
and they are electron density, electron temperature, and
plasma potential. The tungsten tip of the probe has a length of
6 mm and radius of 0.18 mm. The probe shaft with a 20 uH
inductor placed inside acts as a filter to suppress rf fluctua-
tions in the probe current (I), induced by fluctuations in the
plasma potential (V,, ). The probe was inserted radially into
the plasma, and subsequently current-voltage (I-V) character-
istics of the probe were acquired by sweeping the probe volt-
age (V) from —100 V and +100 V. The plasma potential was
determined as a voltage at the intersection of two tangent lines
fit to the regions below and above the characteristic “ knee” in
the curve. The electron temperature (7, ) was measured from
the slope of In(I) versus V, where a tangent line was fitted to
the voltage region less than, but close, to the potential. A for-
mula from which the electron density (N, ) is estimated is
given by:

I 1/2
N - (VP)(27rme\ "
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where I(V,) is the probe current with the probe voltage set

to the Vp s

indicate the electron charge and mass, respectively, and k
denotes the Boltzman constant.

and A, is the probe surface area; e and m,

Table 1. Experimental factors for statistical design.

Factor Range Units
Source Power 700-900 Watts
Pressure 5-10 MTorr

Chuck Position -30-90 Mm
Cl, 60-120 Scem

For each attribute and a given factor combination, a total of
35 measurements were performed across the wafer diameter
and then the measured data were averaged. Each averaged
attribute was used as the model output (or response). Apart
from the 2* factorial experiment, eight experiments were addi-
tionally preformed to provide the test data for model evalua-
tion. Consequently, a total of 24 experiments were required for
model build up and evaluation. The spatial plasma uniformity
was estimated using the metric defined as:

uniformity = e = Xsin 100090, )
2% X
where X denotes individual plasma attribute, X, and
X pin  indicate the maximum and minimum values among the
measured data for each X . Remaining X is the average
of the measured data for each X .

avg

111. Plasma modeling using rbfn
1. Basics of RBFN
As depicted in Fig. 2.A, RBFN is a two-layer fully con-
nected network.
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Fig. 2.A A typical architecture of radial basis function network.

Each hidden neuron is parameterized by two quantities: a
center u of a receptive field and a width parameter ¢, 2 of
the field. The center corresponds to the vector defined by the
weights between the node and the input nodes. The receptive
field is an area in the input space that activates the hidden
neurons and serves to cluster similar input vectors. In this
sense, the RBFN performs a local mapping rather than a
global mapping as in BPNN. As an activation function, hidden
nodes employ radial basis function that is radially symmetric
in input space. For the j th hidden neuron in pattern layer, the
activation is defined as:

(x_#j)z
c 2

g, (x)=exp[- 1. 3

The output layer is a layer of linear neurons and transforms
linearly the hidden neuron outputs. Prediction from RBFN is
thus computed as:

A

Y, = Wbiw+zng,(x)- 1G]
j

In this work, the RBFN coded originally by MATLAB was
utilized and modified to accommodate the plasma data given.
Here, the width parameter was set to 0.8326/spread, where the
spread was experimentally adjusted to optimize model predic-
tion performance.

2. Basics of GRNN

A schematic diagram of GRNN is depicted in Fig. 2.B. The
GRNN consists of four layers: input layer, pattern layer, sum-
mation layer and output layer. The number of input units in the
first layer is equal to independent factors ( x;), which is four
here. The first layer is fully connected to the second, pattern
layer, where each unit represents a training pattern and its
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Fig. 2. B A typical architecture of generalized regression
neural network.

output is a measure of the distance of the input from the stored
patterns. Each pattern layer unit is connected to the two neu-
rons in the summation layer: S-summation neuron and D-
summation neuron. The S-summation neuron computes the
sum of the weighted outputs of the pattern layer while the D-
summation neuron calculates the unweighted outputs of the
pattern neurons. The connection weight between the ith neu-
ron in the pattern layer and the S-summation neuron is y;, the
target output value corresponding to the i th input pattern. For
D-summation neuron, the connection weight is unity. The
output layer merely divides the output of each S-summation
neuron by that of each D-summation neuron, yielding the
predicted value expressed as:

. 2 vexpl-D(x,x))]
Y= =

, ®
2 exp[—-D(x,x;)]
i=1
where » indicates the number of independent input variables
and the Gaussian D function is defined as:

D(x,x)= f, Gty (6)
j=1

i

where p indicates the total number of training patterns and
the O is generally referred to as the smoothing parameter,
whose optimal value is often determined experimentally. Be-
sides RBFN and GRNN, RSM was also constructed for a
comparison, which is typically expressed as:

K k
y=ﬁa+2ﬂixi+2ﬁiixi2+Zzﬂijxixj’ M
i=1 i i i

where y is a plasma attribute, 8; and ﬂ,-j are regression
coefficients, and x; is a regressor variable representing a
factor in Table I. An index k& denotes the total number of the

factors, four in this study.

IV. Performance evaluation

1. Model development

Plasma attributes were modeled individually and thus a total
of six RBFN models were constructed. Each RBFN was
trained on the sixteen experiments obtained from the 2* full
factorial design. Prediction performances of trained models
were subsequently tested on the eight experiments. To opti-
mize model performance, the spread parameter was incremen-
tally adjusted until the root mean-squared error (RMSE) is
minimized. Here the RMSE is defined as:

Y (-5

i=1

, ®)

n—-1

where n is the size of the test set, y; is the measured value of
the plasma attribute, and y; is the prediction from the model.
In Fig. 3, prediction errors of electron density model are de-
picted as a function of the parameter. As indicated in Fig. 3,
one best error is obtained at the spread parameter 1.05 and the
corresponding RMSE is 0.409. For the other electron tempera-
ture and plasma potential including electron density, optimized
parameters for RBNN are contained in Table 2 along with
those for GRNN. Meanwhile, the regression coefficients in (7)
were estimated using the SAS statistical package and those
estimated ones are included in Table 3.
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Fig. 3. Predictive performance of RBFN density model with
increasing the spread parameter.
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Table 2. Spread and smoothing factors optimized for RBFN

and GRNN.
Plasma Attribute RBFN GRNN
Electron Density (10'%cm®) 1.05 0.50
Electron Temperature (eV) 1.13 0.50
Plasma Potential (V) 1.14 0.40

2. Comparison of predictive models

Figure 4 exhibits predictions obtained from density models
of RBFN, GRNN, and RSM. As illustrated in Fig. 4, the RBFN
provides better estimates over GRNN and RSM. This im-
provement is further supported by the prediction errors shown
in Fig. 4. An improvement of more than 17% is demonstrated
for the RBFN over GRNN and RSM. Of interest is that both
predictive capabilities of GRNN and RSM are identical. This
also appears in modeling electron temperature as in Fig. 5. In
this case, about 6% improvement is achieved for RBFN over
GRNN and RSM. Figure 6 compares models derived for
plasma potential. All the models demonstrate performances
commensurable. Spatial plasma data were additionally mod-
eled and resultant prediction errors are contained in Table 4.
Table 4 reveals an improvement of RBFN over GRNN and
RSM. From Figs. 4-6 and Table 4, it can generally be deter-
mined that RBFN is the best predictor over the other models.
Another attempt made was to correlate model prediction capa-
bility to the training data, which may facilitate choosing a
model suitable for a data with an arbitrary distribution. This
was accomplished by quantifying model prediction error with
another R® metric, defined as the square of correlation coeffi-
cients while characterizing the training data via statistical

Table 3. Estimated regression coefficients of RSM.

Regression | Electron Electron Plasma
Cf)efﬁ— Dcﬂlsity3 Temperature Potential (V)
cients (10" /cm™) (eV)
B, 1.812 0.708 2.832
B 0.812E-2 0.205E-2 0.150E-1
B, 0.231E-1 -0.132E-1 -0.295E-1
B -0.268 0.364 1.800
ﬂ4 -0.205E-1 -0.468E-2 -0.175E-1
B 0 0 0
Bis 0.338E-4 0.177E-4 0.480E-4
Bis 0 0 0
B 2 -0.212E-3 | -0.405E-3 -0.229E-2
,B 24 -0.166E-2 0.833E-5 0.190E-2
Bis 0 0 0
B2 0364E-4 | 0.541E-5 0.160E-4
B 2 2 0.809E-4 0.118E-4 -0.204E-4
B2 -0.208E-3 | -0.450E-3 -0.592E-3
B. 0 0 0

mean. Resultant correlations are shown in Fig. 7. For the data
with smaller standard deviation, each model exhibits relatively
smaller R? values, implying that all the models experience
difficulties in generalizing the data with smaller standard de-
viation. This undesirable situation seems to improve as the
deviation becomes larger.

Table 4. RMS prediction errors of spatial uniformity (U)
Data.

Attributes RBNN GRNN RSM
Ne(U) (10%cm®)  2.623 2.89 3.17
Te (U) (eV) 5.074 592 5.92

Vp (U) (V) 3.481 3.58 3.57
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Fig. 4. Prediction error comparison of electron density model.
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Fig. 6. Prediction error comparison of plasma potential model.
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Fig. 7. Correlation between model data fit performance and
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V. Conclusion

Radial basis function network was used to model a hemi-
spherical inductively coupled plasma (HICP). The HICP was
characterized by a 2 full factorial experiment, the factors that
were varied in the design include source power, pressure, posi-
tion of chuck holder, and Cl, flow rate. For a comparison,
other generalized regression neural network and statistical
response models were further constructed. A total of six
plasma attributes were modeled and compared to each other to
examine their relative advantages from the standpoint of pre-
diction accuracy. Performances of Both RBFN and GRNN

were optimized by incrementally adjusting related control
parameters. Comparisons revealed an improvement of RBFN

. over the others as well as a comparable performance between

GRNN and RSM. This implies that RSM behaviors can be
estimated by GRNN. A correlation study uncovered a draw-
back common to all the models that they are less effective in
generalizing the data with relatively larger standard deviation.
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