• Title/Summary/Keyword: Region-Of-Interest Mask

Search Result 21, Processing Time 0.026 seconds

People Counting Method using Moving and Static Points of Interest (동적 및 정적 관심점을 이용하는 사람 계수 기법)

  • Gil, Jong In;Mahmoudpour, Saeed;Whang, Whan-Kyu;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.22 no.1
    • /
    • pp.70-77
    • /
    • 2017
  • Among available people counting methods, map-based approaches based on moving interest points have shown good performance. However, the stationary people counting is challenging in such methods since all static points of interest are considered as background. To include stationary people in counting, it is needed to discriminate between the static points of stationary people and the background region. In this paper, we propose a people counting method based on using both moving and static points. The proposed method separates the moving and static points by motion information. Then, the static points of the stationary people are classified using foreground mask processing and point pattern analysis. The experimental results reveal that the proposed method provides more accurate count estimation by including stationary people. Also, the background updating is enabled to solve the static point misclassification problem due to background changes.

Virtual core point detection and ROI extraction for finger vein recognition (지정맥 인식을 위한 가상 코어점 검출 및 ROI 추출)

  • Lee, Ju-Won;Lee, Byeong-Ro
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.3
    • /
    • pp.249-255
    • /
    • 2017
  • The finger vein recognition technology is a method to acquire a finger vein image by illuminating infrared light to the finger and to authenticate a person through processes such as feature extraction and matching. In order to recognize a finger vein, a 2D mask-based two-dimensional convolution method can be used to detect a finger edge but it takes too much computation time when it is applied to a low cost micro-processor or micro-controller. To solve this problem and improve the recognition rate, this study proposed an extraction method for the region of interest based on virtual core points and moving average filtering based on the threshold and absolute value of difference between pixels without using 2D convolution and 2D masks. To evaluate the performance of the proposed method, 600 finger vein images were used to compare the edge extraction speed and accuracy of ROI extraction between the proposed method and existing methods. The comparison result showed that a processing speed of the proposed method was at least twice faster than those of the existing methods and the accuracy of ROI extraction was 6% higher than those of the existing methods. From the results, the proposed method is expected to have high processing speed and high recognition rate when it is applied to inexpensive microprocessors.

Bar Code Location Algorithm Using Pixel Gradient and Labeling (화소의 기울기와 레이블링을 이용한 효율적인 바코드 검출 알고리즘)

  • Kim, Seung-Jin;Jung, Yoon-Su;Kim, Bong-Seok;Won, Jong-Un;Won, Chul-Ho;Cho, Jin-Ho;Lee, Kuhn-Il
    • The KIPS Transactions:PartD
    • /
    • v.10D no.7
    • /
    • pp.1171-1176
    • /
    • 2003
  • In this paper, we propose an effective bar code detection algorithm using the feature analysis and the labeling. After computing the direction of pixels using four line operators, we obtain the histogram about the direction of pixels by a block unit. We calculate the difference between the maximum value and the minimum value of the histogram and consider the block that have the largest difference value as the block of the bar code region. We get the line passing by the bar code region with the selected block but detect blocks of interest to get the more accurate line. The largest difference value is used to decide the threshold value to obtain the binary image. After obtaining a binary image, we do the labeling about the binary image. Therefore, we find blocks of interest in the bar code region. We calculate the gradient and the center of the bar code with blocks of interest, and then get the line passing by the bar code and detect the bar code. As we obtain the gray level of the line passing by the bar code, we grasp the information of the bar code.

A Generation of ROI Mask and An Automatic Extraction of ROI Using Edge Distribution of JPEG2000 Image (JPEG2000 이미지의 에지 분포를 이용한 ROI 마스크 생성과 자동 관심영역 추출)

  • Seo, Yeong Geon;Kim, Hee Min;Kim, Sang Bok
    • Journal of Digital Contents Society
    • /
    • v.16 no.4
    • /
    • pp.583-593
    • /
    • 2015
  • Today, caused by the growth of computer and communication technology, multimedia, especially image data are being used in different application divisions. JPEG2000 that is widely used these days provides a Region-of-Interest(ROI) technique. The extraction of ROI has to be rapidly executed and automatically extracted in a huge amount of image because of being seen preferentially to the users. For this purpose, this paper proposes a method about preferential processing and automatic extraction of ROI using the distribution of edge in the code block of JPEG2000. The steps are the extracting edges, automatical extracting of a practical ROI, grouping the ROI using the ROI blocks, generating the mask blocks and then quantization, ROI coding which is the preferential processing, and EBCOT. In this paper, to show usefulness of the method, we experiment its performance using other methods, and executes the quality evaluation with PSNR between the images not coding an ROI and coding it.

Automatic Extraction and Coding of Multi-ROI (다중 관심영역의 자동 추출 및 부호화 방법)

  • Seo, Yeong-Geon;Hong, Do-Soon;Park, Jae-Heung
    • Journal of Digital Contents Society
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • JPEG2000 offers the technique which compresses the interested regions with higher quality than the background. It is called by an ROI(Region-of-Interest) coding method. In this paper, we use images including the human faces, which are processed uppermost and compressed with high quality. The proposed method consists of 2 steps. The first step extracts some faces and the second one is ROI coding. To extract the faces, the method cuts or scale-downs some regions with $20{\times}20$ window pixels for all the pixels of the image, and after preprocessing, recognizes the faces using neural networks. Each extracted region is identified by ROI mask and then ROI-coded using Maxshift method. After then, the image is compressed and saved using EBCOT. The existing methods searched the ROI by edge distributions. On the contrary, the proposed method uses human intellect. And the experiment shows that the method is sufficiently useful with images having several human faces.

A Technique Getting Fast Masks Using Rough Division in Dynamic ROI Coding of JPEG2000 (JPEG2000의 동적 ROI 코딩에서 개략적인 분할을 이용한 빠른 마스크 생성 기법)

  • Park, Jae-Heung;Lee, Jum-Sook;Seo, Yeong-Geon;Hong, Do-Soon;Kim, Hyun-Joo
    • The KIPS Transactions:PartB
    • /
    • v.17B no.6
    • /
    • pp.421-428
    • /
    • 2010
  • It takes a long time for the users to view a whole image from the image server under the low-bandwidth internet environments or in case of a big sized image. In this case, as there needs a technique that preferentially transfers a part of image, JPEG2000 offers a ROI(Region-of-Interest) coding. In ROI coding, the users see the thumbnail of image from the server and specifies some regions that they want to see first. And then if an information about the regions are informed to the server, the server preferentially transfers the regions of the image. The existing methods requested a huge time to compute the mask information, but this thesis approximately computes the regions and reduces the creating time of the ROI masks. If each code block is a mixed block which ROI and background are mixed, the proper boundary points should be acquired. Searching the edges of the block, getting the two points on the edge, to get the boundary point inside the code block, the method searches a mid point between the two edge points. The proposed method doesn't have a big difference compared to the existing methods in quality, but the processing time is more speedy than the ones.

Evaluation of U-Net Based Learning Models according to Equalization Algorithm in Thyroid Ultrasound Imaging (갑상선 초음파 영상의 평활화 알고리즘에 따른 U-Net 기반 학습 모델 평가)

  • Moo-Jin Jeong;Joo-Young Oh;Hoon-Hee Park;Joo-Young Lee
    • Journal of radiological science and technology
    • /
    • v.47 no.1
    • /
    • pp.29-37
    • /
    • 2024
  • This study aims to evaluate the performance of the U-Net based learning model that may vary depending on the histogram equalization algorithm. The subject of the experiment were 17 radiology students of this college, and 1,727 data sets in which the region of interest was set in the thyroid after acquiring ultrasound image data were used. The training set consisted of 1,383 images, the validation set consisted of 172 and the test data set consisted of 172. The equalization algorithm was divided into Histogram Equalization(HE) and Contrast Limited Adaptive Histogram Equalization(CLAHE), and according to the clip limit, it was divided into CLAHE8-1, CLAHE8-2. CLAHE8-3. Deep Learning was learned through size control, histogram equalization, Z-score normalization, and data augmentation. As a result of the experiment, the Attention U-Net showed the highest performance from CLAHE8-2 to 0.8355, and the U-Net and BSU-Net showed the highest performance from CLAHE8-3 to 0.8303 and 0.8277. In the case of mIoU, the Attention U-Net was 0.7175 in CLAHE8-2, the U-Net was 0.7098 and the BSU-Net was 0.7060 in CLAHE8-3. This study attempted to confirm the effects of U-Net, Attention U-Net, and BSU-Net models when histogram equalization is performed on ultrasound images. The increase in Clip Limit can be expected to increase the ROI match with the prediction mask by clarifying the boundaries, which affects the improvement of the contrast of the thyroid area in deep learning model learning, and consequently affects the performance improvement.

Assessment of the Cerebrospinal Fluid Effect on the Chemical Exchange Saturation Transfer Map Obtained from the Full Z-Spectrum in the Elderly Human Brain

  • Park, Soonchan;Jang, Joon;Oh, Jang-Hoon;Ryu, Chang-Woo;Jahng, Geon-Ho
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.139-149
    • /
    • 2019
  • Purpose: With neurodegeneration, the signal intensity of the cerebrospinal fluid (CSF) in the brain increases. The objective of this study was to evaluate chemical exchange saturation transfer (CEST) signals with and without the contribution of CSF signals in elderly human brains using two different 3T magnetic resonance imaging (MRI) sequences Methods: Full CEST signals were acquired in ten subjects (Group I) with a three-dimensional (3D)-segmented gradient-echo echo-planar imaging (EPI) sequence and in ten other subjects (Group II) with a 3D gradient and spin-echo (GRASE) sequence using two different 3T MRI systems. The segmented tissue compartments of gray and white matter were used to mask the CSF signals in the full CEST images. Two sets of magnetization transfer ratio asymmetry (MTRasym) maps were obtained for each offset frequency in each subject with and without masking the CSF signals (masked and unmasked conditions, respectively) and later compared using paired t-tests. Results: The region-of-interest (ROI)-based analyses showed that the MTRasym values for both the 3D-segmented gradient-echo EPI and 3D GRASE sequences were altered under the masked condition compared with the unmasked condition at several ROIs and offset frequencies. Conclusions: Depending on the imaging sequence, the MTRasym values can be overestimated for some areas of the elderly human brain when CSF signals are unmasked. Therefore, it is necessary to develop a method to minimize this overestimation in the case of elderly patients.

An Eefficient ROI Code Block Discrimination Algorithm for Dynamic ROI Coding (동적 관심영역 코딩을 위한 효율적인 관심영역 코드블록 판별 알고리듬)

  • Kang, Ki-Jun;Ahn, Byeong-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.1
    • /
    • pp.13-22
    • /
    • 2008
  • This paper proposes an efficient ROI code block discrimination algorithm for dynamic ROI coding. The proposed algorithm calculates the girth of the ROI only with some mask information in consideration of the characteristics of the shape of the ROI for reducing a ROI code block discrimination time, and this proposed algorithm discriminates whether there is a ROI code block by the girth and the critical value of the ROI. Also, this discrimination algorithm is capable of treating the coefficients of the background within a ROI code block preferentially and controlling a loss by controlling the threshold value of the ROI. In order to demonstrate the utility of the proposed method, this paper conducted a comparative experiment of the proposed method with the existing methods. As a result of this experiment, it was confirmed that the proposed method was superior to the conventional methods in terms of quality and speed.

  • PDF

Detection of Traffic Light using Color after Morphological Preprocessing (형태학적 전처리 후 색상을 이용한 교통 신호의 검출)

  • Kim, Chang-dae;Choi, Seo-hyuk;Kang, Ji-hun;Ryu, Sung-pil;Kim, Dong-woo;Ahn, Jae-hyeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.367-370
    • /
    • 2015
  • This paper proposes an improve method of the detection performance of traffic lights for autonomous driving cars. Earlier detection methods used to adopt color thresholding, template matching and based learning maching methods, but its have some problems such as recognition rate decreasing, slow processing time. The proposed method uses both detection mask and morphological preprocessing. Firstly, input color images are converted to YCbCr image in order to strengthen its illumination, and horizontal edge components are extracted in the Y Channel. Secondly, the region of interest is detected according to morphological characteristics of the traffic lights. Finally, the traffic signal is detected based on color distributions. The proposed method showed that the detection rate and processing time improved rather than the conventional algorithm about some surrounding environments.

  • PDF