• Title/Summary/Keyword: Regeneration rate

Search Result 705, Processing Time 0.026 seconds

Evaluation of antioxidant activity, zebrafish embryo toxicity, and regenerative efficacy of Symphoricarpos albus (Symphoricarpos albus의 항산화능과 Zebrafish 배아 독성 및 재생 효능 평가)

  • Chanwoo Lee;HyeYeon Heo;Myunsoo Kim;YoungPyo Jang;Bo Ae Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.292-304
    • /
    • 2024
  • This study compared and evaluated the antioxidant activities of Symphoricarpos albus(S. albus) extract and fermented extract. Antioxidant activity was measured by DPPH radical scavenging, FRAP, and ABTS. Concentrations were measured at 200, 100, 50, and 10 ㎍/mL, and antioxidant activity increased in a concentration-dependent manner. S. albus leaves fermented extracts had the highest antioxidant activity. And this study evaluated the safety and tail regeneration of S. albus extract using zebrafish model embryos. Zebrafish are in the spotlight as an alternative animal and can be used for cosmetic research. Zebrafish embryos were collected and evaluated for coagulation rate, hatching rate, and cardiotoxicity. As a result, it was toxic at concentrations above 100 ㎍/ml. The tail was cut and the regenerative effect was observed for 3 days. As a result, from 72 hours, S. albus 200ug/ml leaf extract showed a 17% regenerative effect compared to the control group. These results suggest that S. albus can be used as a natural material for antioxidant and regeneration for skin improvement.

Mathematical Modelling of Phenol Desorption from Spent Activated Carbon by Acetone (활성탄에 흡착된 페놀의 아세톤 탈착 모델에 대한 연구)

  • Kim, Seungdo;Oh, Young-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2115-2123
    • /
    • 2000
  • This research was designed to investigate the mathematical model and kinetics of phenol desorption from spent activated carbon. elucidating the desorption characteristics of phenol in the case of using acetone. The Freundlich isotherm constant ($k_e$) is expressed as a function of temperature: $k_e(T)=0.1exp(797.297/T)$. The Freundlich isotherm constant(n) is a weak temperature function and is rarely affected by temperature below $50^{\circ}C$. whereas it is necessary to correct the n value with respect to temperature above $100^{\circ}C$ owing to significant deviation (~5%). Based on the assumption that the surface desorption reaction of phenol is rate limiting, the desorption model was developed. Desorption reaction constant($k_d$) was determined by means of fitting the theoretical results best to experimental ones. The Arrhenius relationships for $k_d$ was expressed by: $k_d(sec^{-1})=0.0479{\cdot}exp(-3037/T)$. The model was verified by comparing the experimental ones under different reaction conditions with the theoretical results determined by the previously estimated $k_d$. Since the difference between them is with 5%, it is expected that the desorption model of this research seems to be appropriate to explain the desorption of phenol from activated carbon by acetone. According to studies of the model. regeneration time and ratio was estimated as a function of temperature under present conditions as follows: (1) regeneration time : ${\tau}_{reg}(hr)=-0.08130T_c+8.4775$. (2) regeneration ratio : ${\eta}(%)=0.2210T_c+83.745$. The regeneration time at 15, 55, and $100^{\circ}C$. respectively. was 7, 4.2, and 0.35 hours, whereas the regeneration ratio was 87. 96. and 99%. respectively. Also. studies of the model would make it possible to determine the regeneration time and ratio under other specific conditions (temperature, applied acetone volume, amount of activated carbon, and initially adsorbed phenol amount).

  • PDF

Effect of extraction socket granulation tissue graft on the regeneration of horizontal furcation defect (발치와의 육아조직 이식이 치근이개 결손부의 재생에 미치는 영향)

  • Oh, Mok-Hoon;Han, Soo-Boo;Son, Sung-Heui;Yang, Seung-Min;Ko, Jae-Seung
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.3
    • /
    • pp.735-751
    • /
    • 1996
  • An ultimate goal of periodontal therapy is to stop the disease process and to regenerate a functionally-oriented periodontium destroyed as a result of periodontal disease. The purpose of this study was to observe the effect of grafting granulation tissue obtained from extraction socket on the regeneration of horizontal furcation defect. Six dogs were used in this study. All mandibular first and third premolars were extracted. At 2, 3, and 5 days after extraction, tissues were obtained from extraction socket of 1 mongrel dog and examined by light microscope. Granulation tissue obtained at 5 days after extraction was chosen as the graft material. Five days later, horizontal furcation defects were created surgically at mandibular second and fourth premolars in the right and left side of the 5 beagle dogs. The entrance area of the artificially prepared "key hole" defects were about $3\;4mm^2$. By random selections, 2 exposed furcation defects were grafted with granulation tissue obtained from extraction socket as experimental group and 1 furcation defect was as control. The flaps were replaced to their original position and sutured with 4-0 chromic cat-gut. Three dogs were sacrificed 4 weeks and two dogs 8 weeks after surgery, and the prepared specimens were examined by light microscope. At 4 weeks, furcations were filled with epithelial lining and fibrous connective tissue infiltrated with chronic inflammatory cells. New bone formation was observed in all groups. Only experimental group showed new cementum formation. At 8 weeks, new cementum, functional arrangement of new PDL fiber, root resorption, and some ankylotic union of newly formed alveolar bone and root surface were observed in all groups. Experimental group showed that epithelial downgrowth was inhibited and new bone formation was more active compared to control. The success rate of the furcation defect healing was higher in experimental group than control. These results suggested that grafting of granulation tissue obtained from extraction socket which combined with reconstructive periodontal flap surgery may promote periodontal regeneration of horizontal furcation defect.

  • PDF

Factors influencing shoot regeneration from petal explant in spray mum 'Purple ND' (스프레이국화 '퍼플엔디'의 꽃잎 배양에 있어서 식물체 재분화요인)

  • Lee, Hyun Suk;Park, Hyun Rho;Kim, Hyun seak;Kim, Chang Kil
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.370-375
    • /
    • 2015
  • This experiment compared the regeneration conditions of the radiation mutant spray chrysanthemum 'purple ND'. The four different flower blooming stages (S1: 10% opened flower, S2: 30% opened flower, S3: 50% opened flower, and S4: 70% opened flower) and different petal parts (TBOP: the basal of petal and TEOP: the end of petal) were used to compare regeneration conditions between plants grown in MS medium supplemented with IAA and BAP. The highest adventitious shooting rate was identified in plants grown on the IAA $1.0mg{\cdot}L^{-1}$ and BAP $2.0mg{\cdot}L^{-1}$ when using the end of petal at the S2 stage. It displayed 79.2% regeneration and produced 33.4 shoots. Rooted plantlets were successfully established in the greenhouse, showing the same morphological characteristics of vegetative and reproductive organs with those of the mother plant. Flow cytometry analysis revealed no ploidy variation between the regenerated plants and the mother plant grown under greenhouse conditions.

Plant Regeneration through Somatic Embryogenesis of Leymus chinensis Trin. (양초(Leymus chinensis Trin.)의 체세포배발생에 의한 식물체 재분화)

  • Kim Myoung Duck;Jin Hua;Park Eun-Joon;Kwon Suk-Yoon;Lee Haeng-Soon;Kwak Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.51-55
    • /
    • 2005
  • Chinese leymus (Leymus chinensis Trin.) is a perennial grass that is widely distributed at high pH sodic and arid soil in the northeastern Asia. An efficient regeneration system was established through somatic embryogenesis of mature seeds to understand its high adaptability to harsh environmental conditions on the basis of molecular biology. The calli were efficiently induced (about $70\%$) from mature seeds on MS medium supplemented with $1.5\;\cal{mg/L}$ 2,4-D. Somatic embryos were formed from the surface of embryogenic callus on MS medium supplemented with $2.0\;\cal{mg/L}\;kinetin\;and\;0.5\;\cal{mg/L}$ NAA after 3 weeks of culture. Roots were induced from the shoot when transferred to MS medium without plant growth regulator for 1 week. Plant regeneration rate was $36\%$ and regenerated plantlets were grown to normal mature plants in pot. An efficient plant regeneration system in this study will be useful for molecular breeding of L. chinensis.

Effects of Operating Variables on Sorption Capacity of CO2 Absorbents for SEWGS Process (SEWGS 공정용 CO2 흡수제들의 흡수능력에 미치는 조업변수들의 영향)

  • Ryu, Ho-Jung;Kim, Hyo-Sung;Lee, Seung-Yong;Lee, Dong-Ho;Kim, Jae-Chang
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.994-1001
    • /
    • 2012
  • The Effects of operating variables on reactivity of two $CO_2$ absorbents (PKM1-SU and P4-600) for SEWGS process were investigated in a pressurized fluidized bed reactor. For both $CO_2$ absorbents, $CO_2$ sorption capacity decreased as the number of absorption-regeneration cycles increased. PKM1-SU absorbent represented higher $CO_2$ sorption capacity than that of P4-600 absorbent. However, P4-600 absorbent represented better performance than PKM1-SU absorbent from the view points of regeneration temperature and regeneration rate. For PKM1-SU absorbent, $CO_2$ sorption capacity increased as the steam concentration increased. However, $CO_2$ sorption capacity increased initially as the steam concentration increased from 5% to 10%, but maintained thereafter for P4-600 absorbent. For both $CO_2$ absorbents, $CO_2$ sorption capacity increased as the final regeneration temperature increased. For PKM1-SU absorbent, $CO_2$ sorption capacity increased as the pressure increased and the increment tendency was drastic at higher pressure than 15 bar.

Anomalous somatic embryos formation and plant regeneration from the cultures of immature embryos of Camellia japonica L. (동백나무 미숙배 배양으로부터 비정상 체세포배 형성과 식물체 재생)

  • Choi, Jong-Hye;Kwon, Suk-Yoon;Choi, Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.258-262
    • /
    • 2011
  • Embryogenic callus was induced from the cultures of immature embryos of Camellia japonica L. on Murashige & Skoog's (MS) solid medium supplemented with 1 mg/L 2,4-dichlorophenoxy acetic acid (2,4-D), and then the embryogenic callus was proliferated on same medium for 4 weeks over. The embryogenic callus was sub-cultured on MS basal medium without 2,4-D to produce coyledonary stage of somatic embryo. The frequency (%) of somatic embryogenesis was 25.1%, and the majority of somatic embryos formed had a abnormal morphology with cupshaped cotyledon (48.3%), one cotyledon (12.6%), three cotyledons (9.4%), four cotyledons (1.9%), whereas was only normal morphology with two cotyledon (27.5%). When the somatic embryos with normal or abnormal cotyledons transfer to MS basal medium or $\frac{1}{2}$ MS medium with/or without plant growth regulators ($GA_3$, IBA) for regeneration, the frequency (%) of two-cotyledon embryos regenerated into plantlets was higher 11.1% than one cotyledon (0.0~8.3 %), three cotyledons (0.0~5.8%), four cotyledons (0.0%), cup-shaped (0.3~4.2%). These results demonstrated that the anomalous cotyledons of somatic embryos could caused to decrease the rate of plant regeneration.

Effect of Physical Pre-treatment of Mature Seed in Callus Formation and Plant Regeneration of Zoysiagrass (잔디종자의 물리적 전처리가 캘러스 형성과 식물체 재분화에 미치는 효과)

  • Ahn, Na-Young;Kim, Yong-Goo;Rahman, Md. Atikur;Bae, Eun Ji;Choi, Su Min;Lee, Kwang Soo;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.4
    • /
    • pp.316-320
    • /
    • 2015
  • In order to improve the transformation efficiency of zoysiagrass by increasing the frequency of callus formation from mature seeds and plant regeneration, the effect of pre-treatment with sea sand was examined. Mature zoysiagrass seeds were given 10 min of swelling time before sea sand treatment using a sea sand and seed ratio of 1 : 1 and a vortex shaking speed of 6 (1,000 rpm) for 10 min. The seeds showed increased callus formation that was more than 2 times the rate in the control. In addition, plant regeneration efficiency was also increased when embryogenic callus induced from sea sand-treated mature seeds was cultured in regeneration medium. These results will be very helpful for improving the genetic transformation frequency of zoysiagrass, a recalcitrant monocot grass.

Callus Formation and Plant Regeneration from Immature Embryos of Eleutherococcus senticosus (가시오갈피 미숙배 배양으로부터 Callus 형성 및 식물체 재분화)

  • Yu, Chang-Yeon;Kim, Jae-Kwang;Ahn, Sang-Deuk
    • Korean Journal of Medicinal Crop Science
    • /
    • v.5 no.1
    • /
    • pp.49-55
    • /
    • 1997
  • This study was conducted to establish mass propagation system from the tissue culture using immature embryos in Eleutherococcus senticosus. Immature embryos from seeds were removed under the microscope and placed on MS, $MSB_5\;and\;B_5$ medium containing several plant growth regulators. While the calli were well formed on media containing 2 mg/l of 2, 4-D, 2 mg/l of 2, 4-D and 0.7 mg/l of TDZ, shoot regeneration was better on MS medium with combinations of high concentrations of TDZ and low concentrations of 2, 4-D. Treatment of 2, 4-D alone was better than treatment of TDZ alone in callus induction, but plant regeneration was reversed. The results of callus formation and shoot regeneration on $MSB_5\;and\;B_5$ media were similar to those of MS media. The rate of callus formation was nearly 100% when 2, 4-D was added to $B_5$, medium on concentration of 2 mg/l or 0.7 mg/l. TDZ showed very significant effect on the formation of multiple shoots.

  • PDF

Effect of Plant Growth Regulators and Media on Regeneration of Sorghum bicolor (L.) Moench (바이오에너지용 수수 품종의 재분화율 증진을 위한 배지와 생장조절제 효과)

  • Goh, Eun-Jeong;Seong, Eun-Soo;Yoo, Ji-Hye;Kil, Hyun-Young;Lee, Jae-Geun;Hwang, In-Seong;Kim, Nam-Jun;Ghimire, Bimal Kumar;Kim, Myong-Jo;Lee, Ju-Kyung;Lim, Jung-Dae;Kim, Na-Young;Yu, Chang-Yeon
    • Korean Journal of Plant Resources
    • /
    • v.24 no.2
    • /
    • pp.168-173
    • /
    • 2011
  • This study was carried out to optimize the embryogenic callus induction and plant regeneration from mature seeds of Sorghum bicolor. The effect of growth regulators was investigated on formation of embryogenic callus. The highest frequency of embryogenic callus was observed when the mature seeds were cultured on B5 medium supplemented with 2 mg/L 2,4-Dichlorophenoxyacetic acid (2,4-D). The highest frequency of plant regeneration from embryogenic callus was observed on MS medium with 0.5 $mg\;l^{-1}$ 6-benzyl amino purine (BAP) and 0.25 $mg\;l^{-1}$ indole-3-butyric acid (IBA) to optimize the shoot regeneration. High concentration of BAP (1 $mg\;l^{-1}$) supplemented with IBA (0.25 $mg\;l^{-1}$) was effective combination for shoot multiplication. MS medium supplemented with 1 $mg\;l^{-1}$ IBA was found to be the most effective for inducing roots. Normal rooted plantlets were transferred to the greenhouse for hardening with over 90% survival rate. Hence, this reproducible protocol could be useful for mass propagation and genetic transformation of S. bicolor.