DOI QR코드

DOI QR Code

SEWGS 공정용 CO2 흡수제들의 흡수능력에 미치는 조업변수들의 영향

Effects of Operating Variables on Sorption Capacity of CO2 Absorbents for SEWGS Process

  • 류호정 (한국에너지기술연구원 온실가스연구단) ;
  • 김효성 (한국에너지기술연구원 온실가스연구단) ;
  • 이승용 (한국에너지기술연구원 온실가스연구단) ;
  • 이동호 (한국에너지기술연구원 온실가스연구단) ;
  • 김재창 (경북대학교 화학공학과)
  • Ryu, Ho-Jung (Greenhouse Gas Center, Korea Institute of Energy Research) ;
  • Kim, Hyo-Sung (Greenhouse Gas Center, Korea Institute of Energy Research) ;
  • Lee, Seung-Yong (Greenhouse Gas Center, Korea Institute of Energy Research) ;
  • Lee, Dong-Ho (Greenhouse Gas Center, Korea Institute of Energy Research) ;
  • Kim, Jae-Chang (Department of Chemical Engineering, Kyungpook National University)
  • 투고 : 2012.06.15
  • 심사 : 2012.07.20
  • 발행 : 2012.12.01

초록

SEWGS 공정에 사용하기 위해 개발된 두 종류의 $CO_2$ 흡수제(PKM1-SU, P4-600)에 대해 가압 회분식 유동층 반응기를 사용하여 각 흡수제의 반응성에 미치는 조업변수의 영향을 측정 및 해석하였다. PKM1-SU 입자와 P4-600 입자 모두 흡수-재생 반복횟수가 증가함에 따라 흡수능이 감소하는 경향을 나타내었으며 $CO_2$ 흡수능력 측면에서는 PKM1-SU 입자가 우수한 성능을 나타내었으나 재생반응온도와 재생반응속도 측면에서는 P4-600 입자가 우수한 것으로 나타났다. PKM1-SU 입자는 스팀농도가 증가함에 따라 $CO_2$ 흡수능이 증가하였으나 P4-600 입자의 경우 스팀농도 5%에서 10%로 증가함에 따라 $CO_2$ 흡수능이 증가한 후 거의 일정한 경향을 나타내었다. 두 흡수제 모두 최종 재생온도가 증가함에 따라 $CO_2$ 흡수능이 증가하는 경향을 나타내었으며 PKM1-SU 입자의 경우 15 bar 이상에서는 압력이 증가함에 따라 $CO_2$ 흡수능력이 급격히 증가하는 경향을 나타내었다.

The Effects of operating variables on reactivity of two $CO_2$ absorbents (PKM1-SU and P4-600) for SEWGS process were investigated in a pressurized fluidized bed reactor. For both $CO_2$ absorbents, $CO_2$ sorption capacity decreased as the number of absorption-regeneration cycles increased. PKM1-SU absorbent represented higher $CO_2$ sorption capacity than that of P4-600 absorbent. However, P4-600 absorbent represented better performance than PKM1-SU absorbent from the view points of regeneration temperature and regeneration rate. For PKM1-SU absorbent, $CO_2$ sorption capacity increased as the steam concentration increased. However, $CO_2$ sorption capacity increased initially as the steam concentration increased from 5% to 10%, but maintained thereafter for P4-600 absorbent. For both $CO_2$ absorbents, $CO_2$ sorption capacity increased as the final regeneration temperature increased. For PKM1-SU absorbent, $CO_2$ sorption capacity increased as the pressure increased and the increment tendency was drastic at higher pressure than 15 bar.

키워드

참고문헌

  1. James, R., "Clean Coal technology Status: $CO_{2}$ Capture and Storage," Technology Briefing for Colorado Rural Electric Association, EPRI(2007).
  2. Ryu, H. J., "Selection of Process Configuration and Operating Conditions for SEWGS System," Trans. of the Korean Hydrogen and New Energy Society, 20(2), 168-178(2009).
  3. Ryu, H. J., Hyun, J. S., Kim, H. and Hwang, T. S., "Reaction Characteristics of WGS Catalyst with Fraction of Catalyst in a Batch Type Fluidized Bed Reactor," Trans. of the Korean Hydrogen and New Energy Society, 22(4), 465-473(2011).
  4. Maurstad, O., "An Overview of Coal Based Integrated Gasification Combined Cycle (IGCC) Technology," MIT report, Publication No. LFEE 2005-002 WP, 1-43(2008).
  5. IEA report, "Prospects for Hydrogen and Fuel Cells," IEA Books, 49-55(2005).
  6. Lee, J. B., Eom, T. H., Choi, D. H., Park, K. W., Ryu. J., Baek, J. I., Ryu, C. K. and Ryu, H. J., "Study on Hybrid Materials of WGS Cataylst and CO2 Sorbent for SEWGS Process," International Symposium on Low Carbon & Renewable Energy Technology, Lotte Hotel, Jeju, Korea, 372(2010).
  7. Lee, J. M., Min, Y. J., Lee, K. B., Jeon, S. G., Na, J. G. and Ryu, H. J., "Enhancement of $CO_{2}$ Sorption Uptake on Hydrotalcite by Impregnation with $K_{2}CO_{3}$," Langmuir, 26(24), 18788-18797(2010). https://doi.org/10.1021/la102974s
  8. Eric, D., Stemphane, W., Paul C. and Rudd, B., "Sour SEWGS Applicaion in IGCC," TCCS-6, Trondheim(2011).
  9. Beavis, R., "CACHET: Outline of Project Objectives and Base Case," CACHET Public Workshop, IFP, Lyon(2008).
  10. Ryu, H. J., Lee, S. Y., Park, Y. C. and Jo, S. H., "Selection of WGS Catalyst and $CO_{2}$ Absorbent for Pre-combustion $CO_{2}$ Capture," Fifth International Conference on Clean Coal Technologies, May 8-12, Zaragoza, Spain, available in http://www.cct2011.org(2011).
  11. Ryu, H. J., Yi, C. K., Park, Y. C. and Jo, S. H., "SEWGS Reaction with Mixture of WGS Catalyst and $CO_{2}$ Absorbent in a Fluidized Bed Reactor," The 13th Korea-Japan Symposium on Catalysis, May 23-25, Seogwipo, Jeju Island, Korea, 230(2011).

피인용 문헌

  1. Capture vol.24, pp.5, 2013, https://doi.org/10.7316/KHNES.2013.24.5.428
  2. Attrition Characteristics of WGS Catalysts for SEWGS System vol.25, pp.2, 2014, https://doi.org/10.7316/KHNES.2014.25.2.122
  3. Effect of Pre-treatment Method on Reactivity of WGS Catalyst for SEWGS System vol.25, pp.4, 2014, https://doi.org/10.7316/KHNES.2014.25.4.355
  4. Comparison of Solid Circulation Characteristics with Change of Lower Loop Seal Geometry in a Circulating Fluidized Bed vol.52, pp.4, 2014, https://doi.org/10.9713/kcer.2014.52.4.522
  5. SEWGS 공정을 위한 유동층 반응기에서 내부 삽입물의 모양 및 WGS 촉매의 형상이 CO 전환율에 미치는 영향 vol.24, pp.2, 2012, https://doi.org/10.7316/khnes.2013.24.2.150
  6. SEWGS 공정을 위한 유동층 반응기에서 내부 삽입물의 모양이 WGS 촉매의 CO 전환율에 미치는 영향 vol.24, pp.6, 2012, https://doi.org/10.7316/khnes.2013.24.6.535
  7. 연소 전 이산화탄소 회수를 위한 흡수제 및 촉매의 수력학적 특성 vol.19, pp.4, 2013, https://doi.org/10.7464/ksct.2013.19.4.437
  8. 내부 삽입물을 적용한 유동층 반응기에서 WGS 촉매의 CO 전화율에 미치는 조업변수들의 영향 vol.25, pp.2, 2012, https://doi.org/10.7316/khnes.2014.25.2.209
  9. High-Temperature and High-Pressure Particle Attrition Characteristics of Dry Sorbents for Pre-Combustion CO2 Capture by a Gas Jet in a Bubbling Fluidized Bed vol.51, pp.8, 2012, https://doi.org/10.1252/jcej.17we259