• Title/Summary/Keyword: Reference Stress

Search Result 642, Processing Time 0.021 seconds

Structural Analysis for a 70/15 ton×105 m Level Luffing Crane (70/15 ton×105 m 레벨러핑 크레인의 구조해석)

  • Kim, Min-Saeng;Shin, Yoo In;Song, Chul Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.983-990
    • /
    • 2013
  • Evaluation of the structural analysis for a 70/15 ton${\times}$105 m LLC (Level Luffing Crane) was conducted with an FEM Tool. Due to a discordance of the modeling and element type, the LLC was progressively analyzed after dividing it into the boom, main structure and rocker. All loads such as slewing, traveling and wind load, etc., that are indicated in the reference standards, were inputted as various severe conditions of the LLC. The deformation, equivalent stress(Von Mises stress), buckling characteristics were evaluated for the LLC structures. The stress concentrated areas over the allowable stress were identified, and reinforcement work was performed with a stiffener.

High Temperature Deformation Resistance of Stainless Steels (스테인레스강의 열간변형저항)

  • 김영환;정병완
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.366-372
    • /
    • 1999
  • The deformation behavior of commercial stainless steels under hot rolling conditions was investigated by means of hot compression tests performed in the temperature range 800$^{\circ}C$ to 1200$^{\circ}C$. The measured flow stress-strain curves were analyzed by using a simple flow stress model. It was found that the reference strength of stainless steels are much higher than that of carbon steel and that nitrogen and molybdenum alloying greatly increases flow stress of austenitic stainless steel. Ferritic and duplex stainless steel showed comparatively low flow stresses. The flow stress model, which correlates the flow stress with temperature and strain rate, was applied to predict roll forces during hot-plate rolling of stainless steels.

  • PDF

Automatic Determination of Cross Sectional Properties For Stress Analaysis of Thin-walled Beams (박벽보의 응력해석을 위한 단면상수의 자동산정)

  • Kim, Moon Young;Choi, Myeong Su;Chang, Young;Kim, Nam Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.41-49
    • /
    • 2002
  • An efficient algorithm automatically determining cross sectional properties of thin-walled beams is developed using the minimum information about geometry of the cross section. This scheme is applied to automatic calculation of normal and shear stress distribution corresponding to stress resultants as well as sectional constants for complex open and closed thin-walled sections. Numerical examples evaluating section constants and stress distributions is presented and compared with the available reference's results.

가중함수법에 의한 볼트 체결부 균열의 임계 경사각 결정에 관한 연구

  • Heo, Seong-Pil;Yang, Won-Ho;Jeong, Gi-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2344-2352
    • /
    • 2000
  • Mechanical joints such as bolted or riveted joints are widely used in mechanical components. The reliable determination of the stress intensity factors for cracks in bolted joints is needed to evaluate the safety and fatigue life of them. The weight function method is an efficient technique to calculate the stress intensity factors for various loading conditions because only the stress analysis of an uncracked model is required. In this paper the mixed-mode stress intensity factors for cracks in bolted joints are obtained by weight function method, in which the coefficients of weight function are determined by finite element analyses for reference loadings. Critical inclined angle that mode I stress intensity factor becomes maximum is determined and the effects of crack length and the magnitude of clearance on critical inclined angle are investigated.

Application of Weight Function Method to the Mixed-Mode Stress Intensity Factor Analysis of Cracks in Bolted Joints (볼트 체결부 균열의 혼합모드 응력확대계수 해석에 대한 가중함수법의 적용)

  • Heo, Sung-Pil;Yang, Won-Ho;Chung, Ki-Hyun;Cho, Myoung-Rae;Hyun, Cheol-Seung
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.212-217
    • /
    • 2000
  • The reliable determination of the stress intensity factors for cracks in bolted Joints is needed to evaluate the safety and fatigue life of them widely used in mechanical components. The weight function method is an efficient technique to calculate the stress intensity factors for various loading conditions using the stresses of an uncracked model. In this paper the mixed-mode stress intensity factors for cracks in bolted joints are obtained by weight function method, in which the coefficients of weight function are determined by finite element analyses far reference loadings. The effects of the magnitude of clearance and factional coefficient on the stress intensity factors are investigated.

  • PDF

V-Factor Estimation Under Thermal and Mechanical Stress for Circumferentially Cracked Cylinder (열하중 및 기계하중이 작용하는 원주 방향 균열 배관에 대한 V-계수 평가)

  • Song, Tae-Kwang;Oh, Chang-Kyun;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1123-1131
    • /
    • 2008
  • This paper provides V-factor estimation under combined mechanical and thermal load for circumferential cracks. Results are based on finite element analyses and effect of types and magnitudes of the thermal stress, crack geometry, the loading mode and plastic strain hardening on variations of the V-factor are investigated. The results of finite element analyses are compared with R6 values. As a result, it is shown that R6 gives generally conservative results. The conservatism is especially increased for the combination of large mechanical and thermal load. As a result, new estimation method which uses failure assessment line in R6 is proposed for V-factor and gives less conservative results.

Dual-phase-lag model on thermo-microstretch elastic solid Under the effect of initial stress and temperature-dependent

  • Othman, Mohamed I.A.;Zidan, Magda E.M.;Mohamed, Ibrahim E.A.
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.355-363
    • /
    • 2021
  • The present paper attempts to investigate the propagation of plane waves in an isotropic elastic medium under the effect of initial stress and temperature-dependent properties. The modulus of elasticity is taken as a linear function of the reference temperature. The formulation is applied under the thermoelasticity theory with dual-phase-lag; the normal mode analysis is used to obtain the expressions for the displacement components, the temperature, the stress, and the strain components. Numerical results for the field quantities are given in the physical domain and illustrated graphically. Comparisons are made with the results predicted by different theories (Lord-Shulman theory, the classical coupled theory of thermoelasticity and the dual-phase-lag model) in the absence and presence of the initial stress as well as the case where the modulus of elasticity is independent of temperature.

The Convergence effect of job stress of counselors on sexual orientation -Focusing on ego resilience- (성폭력 관련기관 상담원의 직무스트레스가 이직 의도에 미치는 융합적 영향 -자아탄력성 매개중심으로-)

  • Park, Yoo-Beom
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.6
    • /
    • pp.193-199
    • /
    • 2017
  • The research is aimed at finding out the relationship between vocational stress and willingness to engage in vocational stress, which measures vocational stress and the ability to cope with the job, and how the job stress relates to job mobility. First of all, the job stress and willingness to transfer jobs related to sexual harassment related agencies have a positive correlation, while self-exploitation, job stress, and willingness to move jobs have shown negative correlation. Second, the self-assessment of self-assessment of ego resilience has served as a complete parameter in relation to the relationship between employee motivation and willingness to leave the job, which is the job of occupational duties. Based on this study, it is important to note that self-reference is an important factor in determining the role of job stress in the workforce because of its self-reference of job stress and motivation in relation to job stress.

Bayesian Analysis for Burr-Type X Strength-Stress Model

  • Kang, Sang-Gil;Ko, Jeong-Hwan;Lee, Woo-Dong
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1999.05a
    • /
    • pp.191-197
    • /
    • 1999
  • In this paper, we develop noninformative priors that are used for estimating the reliability of stress-strength system under the Burr-type X distribution. A class of priors is found by matching the coverage probabilities of one-sided Bayesian credible interval with the corresponding frequentist coverage probabilities. It turns out that the reference prior is a first order matching prior. The propriety of posterior under matching prior is provided. The frequentist coverage probabilities are given for small samples.

  • PDF

Advanced Finite Element Technology for Fracture Mechanics Analysis of Cracked Shells (균열 쉘의 파기역학해석을 위한 선진유한요소기법)

  • 우광성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.3-8
    • /
    • 1990
  • A new finite element technology based on p-version of F.E.M. is discussed with reference to its potential for application to stress intensity factor computations. In linear elastic fracture mechanics, especially cracked cylindrical shells. It is shown that the p-version nutlet is far better suited for computing the stress intensity factors than the conventional h-version models with the help of three test problems. The main advantage of this technology is that the accuracy of approximation can be established without mesh refinement or the use of special procedures.

  • PDF