• Title/Summary/Keyword: Reduction of Energy

Search Result 5,073, Processing Time 0.036 seconds

Policy implication of nuclear energy's potential for energy optimization and CO2 mitigation: A case study of Fujian, China

  • Peng, Lihong;Zhang, Yi;Li, Feng;Wang, Qian;Chen, Xiaochou;Yu, Ang
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1154-1162
    • /
    • 2019
  • China is undertaking an energy reform from fossil fuels to clean energy to accomplish $CO_2$ intensity (CI) reduction commitments. After hydropower, nuclear energy is potential based on breadthwise comparison with the world and analysis of government energy consumption (EC) plan. This paper establishes a CI energy policy response forecasting model based on national and provincial EC plans. This model is then applied in Fujian Province to predict its CI from 2016 to 2020. The result shows that CI declines at a range of 43%-53% compared to that in 2005 considering five conditions of economic growth in 2020. Furthermore, Fujian will achieve the national goals in advance because EC is controlled and nuclear energy ratio increased to 16.4% (the proportion of non-fossil in primary energy is 26.7%). Finally, the development of nuclear energy in China and the world are analyzed, and several policies for energy optimization and CI reduction are proposed.

A Case Study of GHG Reduction Based on Electricity Consumption Pattern of Individual Rooms : In case of Seoul National University (실별 전력 소비패턴에 의거한 온실가스 감축 잠재량 산정 - 서울대학교 관악 캠퍼스를 대상으로 -)

  • Kim, Seok-Young;Park, Moonseo;Lee, Hyun-Soo;Kim, Sooyoung;Jung, Hye-Jin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.4
    • /
    • pp.55-64
    • /
    • 2013
  • As GHG target management is introduced in Korea, designated establishment takes responsibilities to reduce more than 30% of expected GHG emission until 2020. Although decreasing GHG has been requested to universities which consume great amount of energy, there are difficulties to apply high cost countermeasures. Therefore, this research suggest a low cost, easily-applicable energy saving method, and derive potential GHG reduction amount in the case of SNU, Kwan-ak campus. First of all, 11 rooms of different use were chosen as the samples, and energy consumption in each room was measured. Standard models for each room were built through researching on the electric devices in each room. Moreover, energy consumption was computed for each devices through analyzing the pattern of electricity consumption. 32 GHG reduction technology and action program were chosen, and they were applied to the standard models for individual rooms. Through multiplying energy reduction rate of each program to energy consumption of each electric device, maximum energy reduction of each electric device is derived. Through that, Maximum GHG reduction for individual rooms and each month and the total GHG reduction capacity of Kwan-ak campus were computed. It was found out that approximately $5,311tCO_2$-eq can be reduced, when reduction technology and action program suggested by this research are applied. It appeared 24.48% of requested reduction amount to SNU can be reduced, till 2016.

A Study on the Development of Building Envelope Elements for Energy Reduction in Multi- Rise Residential Buildings

  • Lee, Myung Sik
    • Architectural research
    • /
    • v.18 no.4
    • /
    • pp.151-155
    • /
    • 2016
  • It is necessary to improve the performance of buildings with respect to the energy efficiency while improving the quality of occupants' lives through a sustainable built environment. During the design and development process, building projects must have a comprehensive, integrated perspective that seeks to reduce heating, cooling and lighting loads through climate-responsive designs. The aim of this study is to find an optimal thermal transmittance (U-values) for building envelope elements for low energy multi-rise residential buildings in the early design phase in Korea. The study found that using small U-values of $0.15w/m^2K$ for exterior walls, ceilings and floors and $1.0w/m^2K$ for south and north facing windows has resulted in energy reduction of 22.1%-59.4% in the south facing rooms and 43%-77.6% of the north facing rooms. It has also found the energy load reduction potential of using small U-values are higher on the north facing rooms. The findings of this study can be suggested to be used as a baseline case for low energy consumption studies. It can also be used to determine appropriate envelope materials and insulation values.

High Purity Hydrogen Production by Redox Cycle Operation (산화-환원 싸이클 조업에 의한 고순도 수소생성)

  • Jeon, Bup-Ju;Park, Ji-Hun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.355-363
    • /
    • 2010
  • High purity hydrogen, 97-99 vol.%, with CO at just ppm levels was obtained in a fixed bed of iron oxide employing the steam-iron cycle operation with reduction at 823K and oxidation in a steam-$N_2$ mixture at 773K TGA experiments indicated that temperature of the reduction step as well as its duration are important for preventing carbon build-up in iron and the intrusion of $CO_2$ into the hydrogen product. At a reduction temperature of 823K, oxide reduction by $H_2$ was considerably faster than reduction by CO. If the length of the reduction step exceeds optimal value, low levels of methane gas appeared in the off-gas. Furthermore, with longer durations of the reduction step and CO levels in the reducing gas greater than 10 vol.%, carbidization of the iron and/or carbon deposition in the bed exhibited the increasing pressure drop over the bed, eventually rendering the reactor inoperable. Reduction using a reducing gas containing 10 vol.% CO and a optimal reduction duration gave constant $H_2$ flow rates and off-gas composition over 10 redox reaction cycles.

Electrochemical Behavior for a Reduction of Uranium Oxide in a $LiCl-Li_{2}O$ Molten Salt with an Integrated Cathode assembly

  • Park, Sung-Bin;Park, Byung-Heung;Seo, Chung-Seok;Jung, Ki-Jung;Park, Seong-Won
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.39-50
    • /
    • 2005
  • Electrolytic reduction of uranium oxide to uranium metal was studied in a $LiCl-Li_{2}O$ molten salt system. The reduction mechanism of the uranium oxide to a uranium metal has been studied by means of a cyclic voltammetry. Effects of the layer thickness of the uranium oxide and the thickness of the MgO on the overpotential of the cathode and the anode were investigated by means of a chronopotentiometry. From the cyclic voltamograms, the decomposition potentials of the metal oxides are the determining factors for the mechanism of the reduction of the uranium oxide in a $LiCl-3\;wt{\%} Li_{2}O$ molten salt and the two mechanisms of the electrolytic reduction were considered with regards to the applied cathode potential. In the chronopotentiograms, the exchange current and the transfer coefficient based on the Tafel behavior were obtained with regard to the layer thickness of the uranium oxide which is loaded into the porous MgO membrane and the thickness of the porous MgO membrane. The maximum allowable currents for the changes of the layer thickness of the uranium oxide and the thickness of the MgO membrane were also obtained from the limiting potential which is the decomposition potential of LiCl.

  • PDF

A Study on the Heat and Mass Balance of Smelting Reduction Process for Manganese Nodules (망간단괴 용융환원 제련공정의 물질 및 열수지 모델링)

  • Cho, Moon Kyung;Park, Kyung Ho;Min, Dong Joon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.304-310
    • /
    • 2009
  • Recently, manganese nodule has been focused on alternative resources because of its high grade of noble metallic elements such as Co, Ni, and Cu etc. From the viewpoint of an optimization the operating variables for energy efficiency of smelting reduction process, thermodynamic model for smelting reduction process of Manganese nodule was developed by using energy and material balance concept. This model provided that specific consumption of pure oxygen and coke was strongly depended on post combustion ratio (PCR) and heat transfer efficiency (HTE). The dressing and dehydrating process of low grade manganese can be proposed an essential process to minimize the specific energy consumption with decreasing slag volume. The effect of electricity coal base smelting reduction process was also discussed from the energy optimizing point of view.

Electrochemical Reduction Process for Pyroprocessing (파이로프로세싱을 위한 전해환원 공정기술 개발)

  • Choi, Eun-Young;Hong, Sun-Seok;Park, Wooshin;Im, Hun Suk;Oh, Seung-Chul;Won, Chan Yeon;Cha, Ju-Sun;Hur, Jin-Mok
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.279-288
    • /
    • 2014
  • Nuclear energy is expected to meet the growing energy demand while avoiding CO2 emission. However, the problem of accumulating spent fuel from current nuclear power plants which is mainly composed of uranium oxides should be addressed. One of the most practical solutions is to reduce the spent oxide fuel and recycle it. Next-generation fuel cycles demand innovative features such as a reduction of the environmental load, improved safety, efficient recycling of resources, and feasible economics. Pyroprocessing based on molten salt electrolysis is one of the key technologies for reducing the amount of spent nuclear fuel and destroying toxic waste products, such as the long-life fission products. The oxide reduction process based on the electrochemical reduction in a LiCl-$Li_2O$ electrolyte has been developed for the volume reduction of PWR (Pressurized Water Reactor) spent fuels and for providing metal feeds for the electrorefining process. To speed up the electrochemical reduction process, the influences of the feed form for the cathode and the type of anode shroud on the reduction rate were investigated.

A Study on the Estimation of Heating Energy and CO2 Reduction depending on a Indoor Set Temperature and Clo value (착의량과 실내설정온도 관계에 따른 난방에너지 및 온실가스저감량 평가 연구)

  • Lee, Chul-Sung;Yoon, Jong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.49-54
    • /
    • 2010
  • Most energy using in building part is mainly consumed for heating and cooling to meet occupancy's comfort temperature. Generally, heating energy consumption show high value than cooling energy in Korea because of high temperature difference in winter season as compared with summer in apartment building. The efforts to develope mechanical performance have been studied to reduce energy consumption in building energy field until now. However, the energy consumption in building is impacted by not only system performance but also PMV particularly at temperature and Clo value. This means that energy consumption can be changed by occupancy's comfort setting temperature in apartment building. This study investigated the passibility of overheating in apartment building by occupant' slow Clo and its setting temperature from preceding research and then the heating energy consumption by setting temperature was calculated with ESP-r. The effects of heating energy and $CO_2$ reduction are also evaluated quantitatively with Clo value. The results showed that keeping ISO-7730 standards can reduce heating energy up to 21% in compared with option 2; also, wearing underclothes with ISO-7730 standard can considerably reduce heating energy consumption up to 50%. As compared with option 2, the reduction of $CO_2$ emission for option 3 showed 0.63TCO2 of kerosene, 0.49TCO2 of LNG and 1.09TCO2 of electricity. The option 4 can be reduced by 1.48TCO2 of kerosene, 1.16TCO2 of LNG and 2.57TCO2 of electricity respectively.

Kinetics Study on the Reduction with Methane, Oxidation with Water and Oxidation with Air of Fe2O3/ZrO2 Using TGA (TGA를 이용한 Fe2O3/ZrO2의 환원/물 분해/공기산화 kinetic 연구)

  • Nam, Hyun-Woo;Kang, Kyoung-Soo;Bae, Ki-Kwang;Kim, Chang-Hee;Cho, Won-Chul;Kim, Young-Ho;Park, Chu-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.168-177
    • /
    • 2011
  • A set of kinetics study on the reduction with $CH_4$, oxidation with steam and oxidation with air was performed for $Fe_2O_3/ZrO_2$. $Fe_2O_3/ZrO_2$ was prepared by aerial oxidation method. The reactivity experiments were performed in a thermogravimetric analyzer (TGA) with different reacting gas concentrations and temperatures. The obtained activation energy of reduction by methane, oxidation by water and oxidation by air are 219 kJ/mol, 238 and 20 respectively.

Effect of $CO_2$ Concentration on Reduction Reactivity of Oxygen Carriers for Chemical-looping Combustor (매체순환식 가스연소기용 산소공여입자들의 환원반응성에 미치는 $CO_2$ 농도의 영향)

  • Ryu, Ho-Jung;Lee, Seung-Yong;Kim, Hong-Ki;Park, Moon-Lee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.3
    • /
    • pp.245-255
    • /
    • 2009
  • Effect of CO$_2$ concentration on reduction reactivity of oxygen carrier particles for chemical-looping combustor were investigated. Four particles, NiO/bentonite, OCN601-650, OCN702-1100, OCN702-1250, were used as oxygen carrier particles and two kinds of gases (CH$_4$, 5%, N$_2$ balance and CH$_4$ 5%, CO$_2$ balance) were used as reactants for reduction. For all oxygen carrier particles, higher maximum conversion, reduction rate, oxygen transfer capacity, and oxygen transfer rate were achieved when we used N$_2$ balance gas. OCN601-650 particle showed higher oxygen transfer rate for all gases than other particles, and therefore we selected OCN601-650 particle as the best candidate. For all particles, lower carbon depositions were observed when we used CO$_2$ balance gas.