A Study on the Heat and Mass Balance of Smelting Reduction Process for Manganese Nodules

망간단괴 용융환원 제련공정의 물질 및 열수지 모델링

  • Cho, Moon Kyung (Yonsei University, Department of Metallurgical Engineering) ;
  • Park, Kyung Ho (Korea Institute of Geoscience and Mineral Resources (KIGAM), Mineral Resources Research Division) ;
  • Min, Dong Joon (Yonsei University, Department of Metallurgical Engineering)
  • 조문경 (연세대학교 공과대학 신소재공학부 금속시스템공학과) ;
  • 박경호 (한국지질자원연구원 광물자원연구부) ;
  • 민동준 (연세대학교 공과대학 신소재공학부 금속시스템공학과)
  • Received : 2009.02.07
  • Published : 2009.05.25

Abstract

Recently, manganese nodule has been focused on alternative resources because of its high grade of noble metallic elements such as Co, Ni, and Cu etc. From the viewpoint of an optimization the operating variables for energy efficiency of smelting reduction process, thermodynamic model for smelting reduction process of Manganese nodule was developed by using energy and material balance concept. This model provided that specific consumption of pure oxygen and coke was strongly depended on post combustion ratio (PCR) and heat transfer efficiency (HTE). The dressing and dehydrating process of low grade manganese can be proposed an essential process to minimize the specific energy consumption with decreasing slag volume. The effect of electricity coal base smelting reduction process was also discussed from the energy optimizing point of view.

Keywords

Acknowledgement

Supported by : 한국지질자원연구원

References

  1. V. E. Mckelvey, N. A. Wright, and R. W. Rowland, Marine and Geology Oceanography of the Pacific Manganese Nodule Province, New York, Plenum (1979)
  2. S. H. Lee, S. M. Moon, J. H. Park, and D. J. Min, Metall. Mater. Trans. B. 33B, 55 (2002) https://doi.org/10.1007/s11663-002-0085-3
  3. J. S. Park, K. H. Park, and D. J. Min, J. Kor. Inst. Met. & Mater. 41, 260 (2003)
  4. D. H. Kim, Ms. Thesis, Yonsei University, Seoul (2000)
  5. S. H. Lee, Ms. Thesis, Yonsei University, Seoul (2001)
  6. J. S. Park, Ms. Thesis, Yonsei University, Seoul (2003)
  7. M. K. Cho, Ms. Thesis, Yonsei University, Seoul (2005)
  8. F. Oester and A. Saatic, Process Technology Proceedings of ISS 6, 1021 (1987)
  9. F. Oester and A. Saatic, Sthahl and Eisen Report, Mass and Heat Balance, Stahlleisen mbH, Dusseldorf (1987)
  10. M. Tokuda, Chinese Society of Metals, 9, 22 (1986)
  11. D. J. Min, W. S. Chung, and J. M. Beak, J. Kor. Inst. Met. & Mater. 35, 237 (1997)
  12. D. J. Min, S. H. Song, W. S. Chung, T. D. Kim, and I. O. Lee, J. Kor. Inst. Met. & Mater. 30, 1186 (1992)
  13. E. T. Turkdogan, Physical Chemistry of High Temperature Technology, p.5-24, Academic press, New York (1980)
  14. O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry, 5th ed., Pergamon press, p.378-384, Oxford (1979)
  15. T. Kohga, M. Imamura, J. Takahashi, N. Tanaka, and T. Nishizawa, JOM 12, 40 (1995)
  16. K. Iwasaki, H. Fukushima, O. Yamase, and K. Takahasi, CAMP-ISIJ 8, 170 (1995)
  17. H. Fukushima, W. Shinichi, T. Takeharu, and K. Iwasaki, CAMP-ISIJ 8, 171 (1995)
  18. M. Ishikawa, CAMP-ISIJ 8, 172 (1995)
  19. Y. S. Kim, Y. J. Park, and M. K. Park, Refining of nonferrous metals (1985)