DOI QR코드

DOI QR Code

Electrochemical Reduction Process for Pyroprocessing

파이로프로세싱을 위한 전해환원 공정기술 개발

  • Received : 2013.11.01
  • Accepted : 2014.03.10
  • Published : 2014.06.01

Abstract

Nuclear energy is expected to meet the growing energy demand while avoiding CO2 emission. However, the problem of accumulating spent fuel from current nuclear power plants which is mainly composed of uranium oxides should be addressed. One of the most practical solutions is to reduce the spent oxide fuel and recycle it. Next-generation fuel cycles demand innovative features such as a reduction of the environmental load, improved safety, efficient recycling of resources, and feasible economics. Pyroprocessing based on molten salt electrolysis is one of the key technologies for reducing the amount of spent nuclear fuel and destroying toxic waste products, such as the long-life fission products. The oxide reduction process based on the electrochemical reduction in a LiCl-$Li_2O$ electrolyte has been developed for the volume reduction of PWR (Pressurized Water Reactor) spent fuels and for providing metal feeds for the electrorefining process. To speed up the electrochemical reduction process, the influences of the feed form for the cathode and the type of anode shroud on the reduction rate were investigated.

원자력발전은 국가의 안정적인 에너지 공급원 및 저탄소 발생 에너지원으로써 기능을 해왔으나, 원자력발전에 필수적으로 발생하는 사용후핵연료 축적이라는 큰 숙제를 안고 있다. 이를 해결하기 위한 방법 중의 하나가 파이로프로세싱과 소듐냉각고속로를 연계한 사용후핵연료의 재활용이다. 용융염 전해공정을 이용하는 파이로프로세싱은 사용후핵연료에 존재하는 장 반감기 고독성 원소와 고방열 핵종을 분리하여 고준위 폐기물을 줄이면서도 고속로의 원료물질을 공급하고, 소듐냉각고속로에서는 이를 이용하여 전력을 생산한 후 다시 그 사용후핵연료를 파이로프로세싱에서 원료물질로 가공하는 개념이다. 파이로프로세싱의 전단부에 해당하는 전해환원 공정은 산화물 형태의 사용후핵연료를 금속으로 전환시켜 후속 공정인 전해정련공정에 금속을 공급하는 역할을 한다. 파이로프로세싱을 위한 전해환원 공정의 상용화를 위해서는 고용량, 고효율의 시스템 개발이 요구되므로 양극과 음극에서 공정 속도의 영향을 미치는 인자를 연구하였다.

Keywords

References

  1. IAEA, International Status and Prospects of Nuclear Power, 2008.
  2. IAEA, Spent Fuel Reprocessing Options, IAEA-TECDOC-1587, 2008.
  3. Willit, J. L., Miller, W. E. and Battles, J. E., "Electrorefining of Uranium and Plutonium-A Literature Review," J. Nucl. Mater., 195, 229-249(1992). https://doi.org/10.1016/0022-3115(92)90515-M
  4. Laidler, J. J., Battles, J. E., Miller, W. E. and Ackerman, J. P. and Carls, E. L., "Development of Pyroprocessing Technology," Prog. Nucl. Energy., 31, 131-140(1997). https://doi.org/10.1016/0149-1970(96)00007-8
  5. Benedict, R. W. and McFarlane, H. F., "EBR-II Spent Fuel Treatment Demonstration Project Status," Radwaste Magazine., 5, 23 (1998).
  6. Karell, E. J. and Gourishankar, K. V., "Separation of Actinides from LWR Spent Fuel Using Molten Salt Based Electrochemical Process," Nucl. Tech., 136, 342-353(2001).
  7. Konings, J., Serp. R. J. M., Malmbeck, R., Rebizant, J., Scheppler, C. and Glatz, J.-P., "Electrochemical Behavior of Plutonium ion in LiCl-KCl Eutectic Melts," J. Electroanal. Chem., 561, 143-148 (2004). https://doi.org/10.1016/j.jelechem.2003.07.027
  8. Goff, K. M., Benedict, R. W., Howden, K. L., Teske, G. M. and Johnson, T. A., "Pyrochemical Treatment of Spent Nuclear Fuel," Proc. of Global 2005, Tsukuba, Japan, October 9-13(2005).
  9. Inoue, T. and Koch, L., "Development of Pyroprocessing and Its Future Direction," Nucl. Eng. Technol., 40, 183-190(2008). https://doi.org/10.5516/NET.2008.40.3.183
  10. Simpson, M. F. and Herrmann, S. D., "Modeling the Pyrochemical Reduction of Spent $UO_2$ Fuel in a Pilot-Scale Reactor," Nucl. Technol., 162, 179-183(2008).
  11. Yoo, J.-H., Seo, C.-S., Kim, E.-H. and Lee, H., "A Conceptual Study of Pyroprocessing for Recovering Actinides," Nucl. Eng. Technol., 40, 581-592(2008). https://doi.org/10.5516/NET.2008.40.7.581
  12. Kitawaki, S., Shinozaki, T., Fukushima, M., Usami, T., Yahagi, N. and Kurata, M., "Recovery of U-Pu Alloy from MOX Using Pyroprocess Series," Nucl. Technol., 162, 118-123(2008).
  13. Koyama, T., Sakamura, Y., Ogata, T. and Kobayashi, H., "Pyroprocess and Metal Fuel Development for Closing Actinide Fuel Cycle with Reduced Waste Burden," Proc. Of Global 2009, Paris, France, September 6-11(2009).
  14. Murakami, T., Uozumi, K., Sakamura, Y., Iizuka, M., Ohta, H., Ogata, T. and Koyama, T., "Recent Achievements and Remaining Challenges on Pyrochemical Reprocessing in CRIEPI," Proc. Of the First ACSEPT International Workshop Lisbon, Portugal, March 31-April 2(2010).
  15. Song, K.-C., Lee, H., Hur, J.-M., Kim, J.-G., Ahn, D.-H. and Cho, Y.-Z., "Status of Pyroprocessing Technology Development in Korea," Nucl. Eng. Technol., 42, 131-144(2010). https://doi.org/10.5516/NET.2010.42.2.131
  16. Inoue, T., Koyama, T. and Arai, Y., "State of the Art of Pyroprocessing Technology in Japan," Energy Procedia., 7, 405-413(2011). https://doi.org/10.1016/j.egypro.2011.06.053
  17. Nagarajan, K., Prabhakara Reddy, B., Ghosh, S., Ravisankar, G., Mohandas, K. S., Kamachi Mudali, U., Kutty, K. V. G., Kasi Viswanathan, K. V., Anand Babu, C., Kalyanasundaram, P., Vasudeva Rao, P. R. and Raj, B., "Development of Pyrochemical Reprocessing for Spent Metal Fuels," Energy Procedia., 7, 405-413(2011). https://doi.org/10.1016/j.egypro.2011.06.053
  18. Goff, K. M., Wass, J. C., Marsden, K. C. and Teske, G. M., "Electrochemical Reprocessing of Used Nuclear Fuel," Nucl. Eng. Technol., 43, 335-342(2011). https://doi.org/10.5516/NET.2011.43.4.335
  19. Lee, H., Park, G.-I., Kang, K.-H., Hur, J.-M., Kim, J.-G., Ahn, D.-H., Cho, Y.-Z. and Kim, E. H., "Pyroprocessing Technology Development at KAERI," Nucl. Eng. Technol., 43, 317-328(2011). https://doi.org/10.5516/NET.2011.43.4.317
  20. Chen, G. Z., Fray, D. J. and Farthing, T. W., "Direct Electrochemical Reduction of Titanium Dioxide to Titanium in Molten Calcium Chloride," Nature., 407, 361-364(2000). https://doi.org/10.1038/35030069
  21. Yasuda, K., Nohira, T., Hagiwara, R. and Ogata, Y. H. "Direct Electrolytic Reduction of Solid $SiO_2$ in Molten $CaCl_2$ for the Production of Solar Grade Silicon," Electrochim. Acta, 53, 106-110(2007). https://doi.org/10.1016/j.electacta.2007.01.024
  22. Jeong, S. M., Jung, J. Y., Seo, C. S. and Park, S. W., "Characteristics of An Electrochemical Reduction of $Ta_2O_5$ for the Preparation of Metallic Tantalum in a $LiCl-Li_2O$ Molten Salt," J. Alloy Compd., 440, 210-215(2007). https://doi.org/10.1016/j.jallcom.2006.05.139
  23. Wang, S. I., Haarberg, G. M. and Kvalheim, E., "Electrochemical Behavior of Dissolved $Fe_2O_3$ in Molten $CaCl_2-KF$," J. Iron Steel Res., 16, 48-51(2008).
  24. Gibilaro, M., Pivato, J., Cassayre, L., Massot, L., Chamelot, L. P. and Taxil, P., "Direct Electroreduction of Oxides in Molten Fluoride Salts," Electrochim. Acta., 56, 5410-5415(2011). https://doi.org/10.1016/j.electacta.2011.02.109
  25. Wang, D., Qiu, G., Jin, X., Hu, X. and Chen, G. Z., "Electrochemical Metallization of Solid Terbium Oxide," Angew. Chem. Int. Ed., 45, 2384-2388(2006). https://doi.org/10.1002/anie.200503571
  26. Yan, X. Y. and Fray, D. J., "Production of Niobium Powder by Direct Electrochemical Reduction of Solid $Nb_2O_5$ in a Eutectic $CaCl_2$-NaCl Melt," Metall. Mater. Trans. B., 33, 685-693(2002). https://doi.org/10.1007/s11663-002-0021-6
  27. Xu, Q., Deng, L.-Q., Wu, Y. and Ma, T., "A Study of Cathode Improvement for Electro-deoxidation of $Nb_2O_5$ in a Eutectic $CaCl_2$-NaCl Melt at 1073K," J. Alloy Compd., 396, 288-294(2005). https://doi.org/10.1016/j.jallcom.2005.01.002
  28. Jeong, S. M., Yoo, H. Y., Hur, J.-M. and Seo, C.-S., "Preparation of Metallic Niobium from Niobium Pentoxide by An Indirect Electrochemical Reduction in a LiCl-$Li_2O$ Molten Salt," J. Alloy Compd., 452, 27-31(2008). https://doi.org/10.1016/j.jallcom.2007.02.057
  29. Chen, G. Z., Gordo, E. and Fray, D. J., "Direct Electrolytic Preparation of Chromium Powder," Metall. Mater. Trans. B., 35, 223-233(2004). https://doi.org/10.1007/s11663-004-0024-6
  30. Gordo, E., Chen, G. Z. and Fray, D. J., "Toward Optimisation of Electrolytic Reduction of Solid Chromium Oxide to Chromium Powder in Molten Chloride Salts," Electrochim. Acta., 49, 2195-2208(2004). https://doi.org/10.1016/j.electacta.2003.12.045
  31. Claux, B., Serp, J. and Fouletier, J., "Electrochemical Reduction of Cerium Oxide Into Metal," Electrochim. Acta., 56, 2771-2780 (2011). https://doi.org/10.1016/j.electacta.2010.12.040
  32. Abdelkader, A. M., Tripuraneni Kilby, K., Cox, A. and Fray, D. J., "DC Voltammetry of Electro-deoxidation of Solid Oxides," Chem. Rev., 113, 2863-2886(2013). https://doi.org/10.1021/cr200305x
  33. Wang, D., Jina, X. and Chen, G. Z., "Solid State Reactions: An Electrochemical Approach in Molten Salts," Annu. Rep. Prog. Chem. Sect. C, 104, 189-234(2008). https://doi.org/10.1039/b703904m
  34. Hur, J.-M., Seo, C. S., Hong, S. S., Kang, D. S. and Park, S. W., "Metallization of $U_3O_8$ Via Catalytic Electrochemical Reduction with $Li_2O$ in LiCl Molten Salt," React. Kinet. Catal. Lett., 80, 217(2003). https://doi.org/10.1023/B:REAC.0000006128.15961.1d
  35. Jeong, S. M., Park, S.-B., Hong, S.-S., Seo, C.-S. and Park, S.-W., "Electrolytic Production of Metallic Uranium from $U_3O_8$ in a 20 kgbatch Scale Reactor," J. Radioanal. Nucl. Chem., 268, 349-356 (2006). https://doi.org/10.1007/s10967-006-0172-z
  36. Park, S. B., Park, B. H., Jeong, S. M., Hur, J. M., Seo, C.-S., Choi, S.-H. and Park, S. W., "Characteristics of An Integrated Cathode Assembly for the Electrolytic Reduction of Uranium Oxide in a LiCl-$Li_2O$ Molten Salt," J. Radioanal. Nucl. Chem., 268, 489-495(2006). https://doi.org/10.1007/s10967-006-0196-4
  37. Hur, J.-M., Kim, T.-J., Choi, I.-K., Do, J. B., Hong, S.-S. and Seo, C.-S., "Chemical Behavior of Fission Products in the Petrochemical Process," Nucl. Technol., 162, 192-198(2008).
  38. Sakamura, Y., Kurata, M. and Inoue, T., "Electrochemical Reduction of $UO_2$ in Molten $CaCl_2$ or LiCl," J. Electrochem. Soc., 153, D31-D39(2006). https://doi.org/10.1149/1.2160430
  39. Sakamura, Y., Omori, T. and Inoue, T., "Application of Electrochemical Reduction to Produce Metal Fuel Material From Actinide Oxides," Nucl. Technol., 162, 169-178(2008).
  40. Herrmann, S. D., Li, S. X., Simpson, M. F. and Phongikarroon, S., "Electrolytic Reduction of Spent Nuclear Oxide Fuel as Part of an Integral Process to Separate and Recover Actinides from Fission Product," Sep. Sci. Technol., 41, 1965-1983(2006). https://doi.org/10.1080/01496390600745602
  41. Herrmann, S. D., Li, S. X. and Simpson, M. F., "Electrolytic Reduction of Spent Light Water Reactor Fuel: Bench-scale Experiment Results," J. Nucl. Sci. Technol., 44, 361-367(2007). https://doi.org/10.1080/18811248.2007.9711295
  42. Herrmann, S. D. and Li, S. X., "Separation and Recovery of Uranium Metal From Spent Light Water Reactor Fuel Via Electrolytic Reduction and Electrorefining," Nucl. Tech., 171, 247-265(2010).
  43. Choi, E.-Y., Lee, J. W., Park, J. J., Hur, J.-M., Kim, J.-K., Jung, K. Y. and Jeong, S. M., "Electrochemical Reduction Behavior of a Highly Porous SIMFUEL Particle in a LiCl Molten Salt," Chem. Eng. J., 207-208, 514-520(2012). https://doi.org/10.1016/j.cej.2012.06.161
  44. Choi, E.-Y., Kim, J.-K., Im, H.-S., Choi, I.-K., Na, S.-H., Lee, J. W., Jeong, S. M. and Hur, J.-M., "Effect of the $UO_2$ form on the Electrochemical Reduction Rate in a LiCl-$Li_2O$ Molten Salt," J. Nucl. Mater., 437, 178-187(2013). https://doi.org/10.1016/j.jnucmat.2013.01.306
  45. Choi, E.-Y., Won, C. Y., Cha, J.-S., Park, W., Im, H.-S., Hong, S. S. and Hur, J.-M., "Electrochemical Reduction of $UO_2$ in LiCl-$Li_2O$ Molten Salt Using Porous and Nonporous Anode Shrouds," J. Nucl. Mater., 444, 261-269(2014). https://doi.org/10.1016/j.jnucmat.2013.09.061
  46. Choi, E.-Y., Hur, J.-M., Choi, I.-K., Kwon, S. G., Kang, D.-S., Hong, S. S., Shin, H.-S., Yoo, M. A. and Jeong, S. M., "Electrochemical Reduciton of Porous 17 kg Uranium Oxide Pellets by Selection of an Optimal Cathode/anode Surface Area Ratio," J. Nucl. Mater., 418, 87-92(2011). https://doi.org/10.1016/j.jnucmat.2011.08.001

Cited by

  1. Alloy by an Electrochemical Reduction in Molten LiCl vol.53, pp.2, 2015, https://doi.org/10.9713/kcer.2015.53.2.145
  2. LiCl 용융염에서 NiO를 혼합한 희토류 산화물의 파이로 전해환원 특성 vol.55, pp.3, 2014, https://doi.org/10.9713/kcer.2017.55.3.379