• Title/Summary/Keyword: Reduction of Energy

Search Result 5,085, Processing Time 0.03 seconds

A Study on the Method about the Economic Feasibility Estimation Considering Renewable Energy (신재생에너지원을 고려한 집단에너지 경제성평가 방법론에 관한 연구)

  • Shin, Hye-Kyeong;Choi, Young-Jun;Choi, In-Sun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.372-374
    • /
    • 2008
  • Korea classified into a development country when UNFCCC was concluded in 1995. So Korea doesn't have a GHG reduction duty until 2012. As the UNFCCC is strengthened, recently there is a growing interest in renewable energy and energy usage efficiency improvement for reducing GHG emission. It is associated with CES and renewable energy. CES is a total energy (heat, cooling and power)supplier in aggregated demand zone like a hotel, building, hospital and redevelopment district using CHP and it improves energy usage efficiency. At present, renewable energy is needed for GHG reduction duty but renewable energy doesn't have economic feasibility. So renewable energy is needed various support system to popularize which is a FIT and RPS. Especially RPS is carrying out instead of FIT in many advanced country and it will be inroduced in Korea. RPS is a duty which electricity service provider must guarantee renewable energy as much as specific ratio of total capacity. Therefore this study conducts an economic feasibility estimation of CES considering renewable energy when RPS will introduced in the future.

  • PDF

Two-Step Thermochemical Cycle with Supported $NiFe_2O_4$ for Hydrogen Production (지지체의 변화에 따른 Ni-페라이트의 2단계 열화학 사이클 반응 특성에 관한 연구)

  • Kim, Woo-Jin;Kang, Kyoung-Soo;Kim, Chang-Hee;Choi, Won-Chul;Kang, Yong;Park, Chu-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.6
    • /
    • pp.505-513
    • /
    • 2008
  • The two-step thermochemical cycle was examined on the $CeO_2$, YSZ, and $ZrO_2$-supported $NiFe_2O_4$ to investigate the effects of support material addition. The supported $NiFe_2O_4$ was prepared by the aerial oxidation method. Thermal reduction was conducted at 1573K and 1523K while water-splitting was carried out at 1073K. Supporting $NiFe_2O_4$ on $CeO_2$, YSZ and $ZrO_2$ alleviated the high-temperature sintering of iron-oxide. As a result, the supported $NiFe_2O_4$ exhibited greater reactivity and repeatability in the water-splitting cycle as compared to the unsupported $NiFe_2O_4$. Especially, $ZrO_2$-supported $NiFe_2O_4$ showed better sintering inhibition effect than other supporting materials, but hydrogen production amount was decreased as cycle repeated. In case of $CeO_2$-supported $NiFe_2O_4$, improvement of hydrogen production was found when the thermal reduction was conducted at 1573K. It was deduced that redox reaction of $CeO_2$ activated above 1573K.

Reduction of Green House Gases by Bioenergy Supplying in Korea (국내 바이오에너지 보급에 따른 온실가스 저감 평가)

  • Hong, Yeon Ki
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • Recently, the development of renewable energy sources in Korea has been needed due to climate change. One of powerful alternative energy resources to mitigate emission is to switch conventional fuels to renewable energy, such as bioenergy. In this study, current status of bioenergy conversion technology and its supply in Korea was investigate. Based on theoretical, technical and realizable potential of biomass in Korea, the amount of reduction of green house gases was estimated. The results shown that the contribution of biomass on 2020 reduction target of green house gases emission in power generation was $513,000\;tCO_2/yr$ and utilization ratio of technical potential of biomass was 6.4%. For the effective supply of bioenergy in Korea, more exact estimation of realizable potential of biomass in Korea and stable supply sources are needed.

Preparation of Copper Nanoparticles and Catalytic Properties for the Reduction of Aromatic Nitro Compounds

  • Duan, Zhongyu;Ma, Guoli;Zhang, Wenjun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4003-4006
    • /
    • 2012
  • A novel copper nanoparticles were synthesized from cupric sulfate using hydrazine as reducing reagents. A series of aromatic nitro compounds were reacted with sodium borohydride in the presence of the copper nanoparticles catalysts to afford the aromatic amino compounds in high yields. Additionally, the catalysts system can be recycled and maintain a high catalytic effect in the reduction of aromatic nitro compounds.

A Study of the Effect of Borehole Thermal Resistance on the Borehole Length (보어홀 전열저항이 보어홀 길이에 미치는 영향에 관한 연구)

  • Lee, Se-Kyoun;Woo, Joung-Son
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.20-27
    • /
    • 2009
  • The effect of borehole thermal resistance on the borehole length is studied. In performing this work a new concept BLRR(borehole length reduction rate) is developed based on the line source model. The solution of line source model is shown to be valid through the comparison with the data of thermal response test. It is shown that BLRR is a function of soil thermal conductivity(k) and borehole thermal resistance($R_b$). The value of BLRR increases with increasing k, which means reducing $R_b$ is more effective when k is high. The reduction of borehole length with change of $R_b$ is easily estimated with BLRR. The validity of BLRR is also examined with EED analysis.

Analysis of Magnetic Arc Reduction of Relay Contacts (릴레이 접점의 자기적 아크 저감 분석)

  • Choi, Sun-Ho;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.234-240
    • /
    • 2019
  • In this work, the magnetic arc reduction phenomena encountered in AC relay contacts were analyzed. To this end, arc duration, instantaneous voltage, and current changes due to changes in the magnetic field were observed. The arc generated at the contact point was affected by the magnitude of the applied magnetic field; the voltage and current waveforms rapidly intersected, resulting in a decrease in arc duration and arc energy. Furthermore, the orientation of the N pole of the magnetic field was found to play a role in the effectiveness of potential arc prevention.

A Research on PV-connected ESS dissemination strategy considering the effects of GHG reduction (온실가스감축효과를 고려한 태양광 연계형 에너지저장장치(ESS) 보급전략에 대한 연구)

  • Lee, Wongoo;KIM, Kang-Won;KIM, Balho H.
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.94-100
    • /
    • 2016
  • ESS(Energy Storage System) is an important source that keeps power supply stable and utilizes electricity efficiently. For example, ESS contributes to resolve power supply imbalance, stabilize new renewable energy output and regulate frequency. ESS is predicted to be expanded to 55.9GWh of installed capacity by 2023, which is 30 times more than that of 2014. To raise competitiveness of domestic ESS industry in this increasing world market, we have disseminated load-shift ESS for continuous power supply imbalance with FR ESS, and also necessity to secure domestic track record is required. However in case of FR ESS, utility of installing thermal power plant is generally generated within 5% range of rated capacity, so that scalability of domestic market is low without dramatic increase of thermal power plant. Necessity of load-shift ESS dissemination is also decreasing effected by surplus backup power securement policy, raising demand for new dissemination model. New dissemination model is promising for $CO_2$ reduction effect in spite of intermittent output. By stabilizing new renewable energy output in connection with new renewable energy, and regulating system input timing of new renewable energy generation rate, it is prospected model for 'post-2020' regime and energy industry. This research presents a policy alternatives of REC multiplier calculation method to induce investment after outlining PV-connected ESS charge/discharge mode to reduce GHG emission, This alternative is projected to utilize GHG emission reduction methodology for 'Post-2020' regime, big issue of new energy policy.

Effects of Difference in Tree Cover on Use and Cost of Heating and Cooling Energy in Residential Neighborhoods of Chuncheon (춘천시 주거지구내 수목피도의 차이가 난냉방에너지 이용 및 비용에 미치는 효과)

  • 조현길;안태원
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.2
    • /
    • pp.19-28
    • /
    • 1999
  • This study quantified shading, evapotranspiration and windspeed-reduction effects of trees on use and cost of heating and cooling energy in two residential neighborhoods of Chuncheon different in tree cover. Annual savings per residence of heating energy were approximately 1,210 MJ(1%) and those of cooling energy, 130 kWh(10%) in study district 1 having tree cover of about 10% . For district 2 with tree cover of about 20%, annual heating and cooling savings were 2,130 MJ(2%) and 180 kWh(19%) per residence, respectively. Trees annually saved energy costs by approximately ₩31,000 ($26, $1=₩1,200) per residence in district 1 and by ₩49,000($41) in district 2. One tree taller than 3 m resulted in annual energy savings of ₩8,000($7) in the study districts. Energy savings by trees in district 2, which had higher tree cover by 10% difference than district 1, were about 2 times greater than those in district 1. This implies that more tree plantings could enhance energy saving effects. Of the total costs saved, 58% was attributed to windspeed reduction and 47%, evapotranspiration. However, shading increased energy costs by 5% due to tree plantings at the wrong locations. Full tree plantings on the west and north of buildings and avoidance of shade-tree plantings of use of solar-friendly trees on the south are recommended to increase building energy savings efficiently.

  • PDF