• Title/Summary/Keyword: Reduction Model

Search Result 5,937, Processing Time 0.032 seconds

Dynamic Analysis of Rotating Bodies Using Model Order Reduction (모델차수축소기법을 이용한 회전체의 동해석)

  • Han, Jeong-Sam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.443-444
    • /
    • 2011
  • This paper discusses a model order reduction for large order rotor dynamics systems results from the finite element discretization. Typical rotor systems consist of a rotor, built-on parts, and a support system, and require prudent consideration in their dynamic analysis models because they include unsymmetric stiffness, localized nonproportional damping and frequency dependent gyroscopic effects. When the finite element model has a very large number of degrees of freedom because of complex geometry, repeated dynamic analyses to investigate the critical speeds, stability, and unbalanced response are computationally very expensive to finish within a practical design cycle. In this paper, the Krylov-based model order reduction via moment matching significantly speeds up the dynamic analyses necessary to check eigenvalues and critical speeds of a Nelson-Vaugh rotor system. With this approach the dynamic simulation is efficiently repeated via a reduced system by changing a running rotational speed because it can be preserved as a parameter in the process of model reduction. The Campbell diagram by the reduced system shows very good agreement with that of the original system. A 3-D finite element model of the Nelson-Vaugh rotor system is taken as a numerical example to demonstrate the advantages of this model reduction for rotor dynamic simulation.

  • PDF

Frequency-Domain Balanced Stochastic Truncation for Continuous and Discrete Time Systems

  • Shaker, Hamid Reza
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.180-185
    • /
    • 2008
  • A new method for relative error continuous and discrete time model order reduction is proposed. The reduction technique is based on two recently developed methods, namely frequency domain balanced truncation within a frequency bound and inner-outer factorization techniques. The proposed method is of interest for practical model order reduction because in this context it shows to keep the accuracy of the approximation as high as possible without sacrificing the computational efficiency. Numerical results show the accuracy and efficiency enhancement of the method.

A new approach to model reduction using matrix pencil method (Matrix Pencil을 이용한 모델 저차화의 새로운 접근방법)

  • 권혁성;정정주;서병설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.105-108
    • /
    • 1997
  • This paper proposes a new approach of balanced model reduction using matrix pencil. The algorithm presented in this paper is to convert full-rank high-order system into rank-deficient system using perturbation made by matrix pencil method. Then the system can be truncated to a low-order system that we want via balanced realization. We discuss the comparison with other methods and the various observations by simulations.

  • PDF

The Effects of Set-up Cost Reduction in the Dynamic Lot Size Model and the EOQ model (동적로트크기결정모형과 EOQ모형에 있어서 가동준비비용의 감소효과)

  • ;Lee, Sang Bum
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.17 no.3
    • /
    • pp.13-26
    • /
    • 1992
  • Set-up reduction is an important aspect of the Japanese Just-In-Time (JIT) and Zero Inventory (ZI) concepts. In this paper, we first analyze the effects of set-up cost reduction on tatal inventory, average lot size and forecast horizon in the dynamic lot size model. We also examine the various effects of set-up cost reduction in the EOQ model and explain why many Japanese firms try to cut set-up cost and/or set-up time greatly.

  • PDF

Investigation of the accuracy of different finite element model reduction techniques

  • Ghannadi, Parsa;Kourehli, Seyed Sina
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.3
    • /
    • pp.417-428
    • /
    • 2018
  • In this paper, various model reduction methods were assessed using a shear frame, plane and space truss structures. Each of the structures is one-dimensional, two-dimensional and three-dimensional, respectively. Three scenarios of poor, better, and the best were considered for each of the structures in which 25%, 40%, and 60% of the total degrees of freedom (DOFs) were measured in each of them, respectively. Natural frequencies of the full and reduced order structures were compared in each of the numerical examples to assess the performance of model reduction methods. Generally, it was found that system equivalent reduction expansion process (SEREP) provides full accuracy in the model reduction in all of the numerical examples and scenarios. Iterated improved reduced system (IIRS) was the second-best, providing acceptable results and lower error in higher modes in comparison to the improved reduced system (IRS) method. Although the Guyan's method has very low levels of accuracy. Structures were classified with the excitation frequency. High-frequency structures compared to low-frequency structures have been poor performance in the model reduction methods (Guyan, IRS, and IIRS).

The Influences of Shopping Enjoyment and Risk Reduction on Behavioral Intention in Internet Shopping Malls using a Moving Virtual Model (움직이는 가상 모델을 활용한 인터넷 쇼핑몰에서 쇼핑의 즐거움, 위험감소가 미래행동의도에 미치는 영향)

  • Yang, Hee-Soon;Choi, Young-Lim
    • Fashion & Textile Research Journal
    • /
    • v.13 no.3
    • /
    • pp.390-397
    • /
    • 2011
  • This study investigates the influences of shopping enjoyment and risk reduction on customers' attitude and the behavioral intention in the Internet shopping mall using a moving virtual model. For this study, we produced a moving virtual model to present a fashion product. The virtual model walks for about one minute on the stage. After respondents viewed it, they completed a questionnaire. The questionnaire consists of online shopping enjoyment, risk reduction, customers' attitude and behavioral intention. Respondents are limited to females aged in their 20s and 30s, who have experienced Internet shopping and are highly interested in fashion products. 411 samples were used for the final analysis. Cronbach's alpha, factor analysis, and multiple regression analysis were conducted. The results are as follows. Online shopping enjoyment and risk reduction influenced the behavioral intention directly as well as through the attitude. However, the size of the influence indicated that online shopping enjoyment is larger than risk reduction. Therefore, Internet malls should utilize the moving virtual model to provide customers with enjoyment and risk reduction, which will increase customers' favorable attitudes and the behavioral intention such as purchase intention and word of mouth.

Improved Model Reduction Algorithm by Nyquist Curve (Nyquist 선도에 의한 개선된 모델 축소 알고리즘)

  • Cho, Joon-Ho;Choi, Jung-Nae;Hwang, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.215-218
    • /
    • 2001
  • To improve the performance of PID controller of high order systems by model reduction, we proposed a new model reduction method in frequency domain. A new model reduction method we proposed, considered four points (${\angle}G(jw)=0$, $-{\pi}/2$, $-{\pi}$, $-3{\pi}/2$) in stead of two points (${\angle}G(jw)=-{\pi}/2$, and $-{\pi}$) in Nyquist curve. And for high order systems that it have not two point (${\angle}G(jw)=-{\pi}/2$, and $-{\pi}$) in Nyquist curve, we proposed a method to annex very small dead time. This method has a annexed very small dead time on the base model for reduction, and we cancel it after to get the reduced model. It is shown that the performance of proposed method is better than any other methods.

  • PDF

Model Reduction Considering Both Resonances and Antiresonances (공진과 반공진 특성을 동시고려한 모델 축소)

  • 허진석;이시복;이창일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.985-990
    • /
    • 2001
  • The Frequency Response Function(FRF)s of FE Model reduced by SEREP methods accurately estimate the full model at resonance frequencies, However these FRFs are not accurate at antiresonance frequencies, Additionally, the truncation errors may he significant in the reduction mode1. So this paper considers the possibility of SERFP method through a numerical method to preserve dynamic behavior at antiresonance and appliers the static or dynamic compensation methods for truncation errors to the reduction model. This compensated reduction model is redesigned for pole-zero cancellation methods the objective of reducing a resonance frequency.

  • PDF

A Balanced Model Reduction for Uncertain Nonlinear Systems (불확실한 비선형 시스템의 균형화된 모델축소)

  • Yoo, Seog-Hwan;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.144-149
    • /
    • 2006
  • This paper deals with a balanced model reduction for uncertain nonlinear systems via T-S fuzzy approach. We define a generalized controllability/observability gramian and obtain a balanced state space model using generalized gramians which can be obtained from solutions of linear matrix inequalities. We present a balanced model reduction scheme by truncating not only state variables but also uncertain elements. An upper bound of the model reduction error will also be suggested. In order to demonstrate the efficacy of our method, a numerical example will be presented.

A STUDY ON THERMAL MODEL REDUCTION AND DYNAMIC RESPONSE (열해석 모델 간략화 및 동적특성에 관한 연구)

  • Jun, Hyoung Yoll;Kim, Jung-Hoon
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.37-44
    • /
    • 2014
  • A detailed satellite panel thermal model composed of more than thousands nodes can not be directly integrated into a spacecraft thermal model due to its node size and the limitation of commercial satellite thermal analysis programs. For the integration of the panel into the satellite thermal model, a reduced thermal model having proper accuracy is required. A thermal model reduction method was developed and validated by using a geostationary satellite panel. The temperature differences of main components between the detailed and the reduced thermal model were less than $1^{\circ}C$ in steady state analysis. Also, the dynamic responses of the detailed and the reduced thermal model show very similar trends. Thus, the developed reduction method can be applicable to actual satellite thermal design and analysis with resonable accuracy and convenience.